Background Detection of extracellular vesicles (EVs) by flow cytometry has poor interlaboratory comparability, owing to differences in flow cytometer (FCM) sensitivity. Previous workshops distributed polystyrene beads to set a scatter-based diameter gate in order to improve the comparability of EV concentration measurements. However, polystyrene beads provide limited insights into the diameter of detected EVs. Objectives To evaluate gates based on the estimated diameter of EVs instead of beads. Methods A calibration bead mixture and platelet EV samples were distributed to 33 participants. Beads and a light scattering model were used to set EV diameter gates in order to measure the concentration of CD61-phycoerythrin-positive platelet EVs. Results Of the 46 evaluated FCMs, 21 FCMs detected the 600-1200-nm EV diameter gate. The 1200-3000-nm EV diameter gate was detected by 31 FCMs, with a measured EV concentration interlaboratory variability of 81% as compared with 139% with the bead diameter gate. Part of the variation in both approaches is caused by precipitation in some of the provided platelet EV samples. Flow rate calibration proved essential because systems configured to 60 μL min differed six-fold in measured flow rates between instruments. Conclusions EV diameter gates improve the interlaboratory variability as compared with previous approaches. Of the evaluated FCMs, 24% could not detect 400-nm polystyrene beads, and such instruments have limited utility for EV research. Finally, considerable differences were observed in sensitivity between optically similar instruments, indicating that maintenance and training affect the sensitivity.
The function of thrombospondin-1 (TSP-1) in hemostasis was investigated in wild-type (WT) and Tsp1 ؊/؊ mice, via dynamic platelet interaction studies with A23187-stimulated mesenteric endothelium and with photochemically injured cecum subendothelium. Injected calcein-labeled WT platelets tethered or firmly adhered to almost all A23187-stimulated blood vessels of WT mice, but Tsp1 ؊/؊ platelets tethered to 45% and adhered to 25.8% of stimulated Tsp1 ؊/؊ vessels only. Stimulation generated temporary endothelium-associated ultralarge von Willebrand factor (VWF) multimers, triggering platelet string formation in 48% of WT versus 20% of Tsp1 ؊/؊ vessels. Injection of human TSP-1 or thrombotic thrombocytopenic purpura (TTP) patient-derived neutralizing anti-ADAMTS13 antibodies corrected the defective platelet recruitment in Tsp1 ؊/؊ mice, while having a moderate effect in WT mice. Photochemical injury of intestinal blood vessels induced thrombotic occlusions with longer occlusion times in Tsp1 ؊/؊ venules (1027 ؎ 377 seconds) and arterioles (858 ؎ 289 seconds) than in WT vessels (559 ؎ 241 seconds, P < .001; 443 ؎ 413 seconds, P < .003) due to defective thrombus adherence, resulting in embolization of complete thrombi, a defect restored by both human TSP-1 and anti-ADAMTS13 antibodies. We conclude that in a shear field, soluble or local plateletreleased TSP-1 can protect unfolded endothelium-bound and subendothelial VWF from degradation by plasma ADAMTS13, thus securing platelet tethering and thrombus adherence to inflamed and injured endothelium, respectively. (Blood. 2006;107: 955-964)
We have generated transgenic mice overexpressing the human P2X 1 ion channel in the megakaryocytic cell lineage. Platelets from transgenic mice exhibited a gain of P2X 1 ionotropic activity as determined by more prominent P2X 1 -mediated Ca 2؉ influx and platelet shape change. P2X 1 overexpression enhanced platelet secretion and aggregation evoked by low doses of collagen, convulxin, or the thromboxane A 2 mimetic U46619. In contrast, transgenic platelet responses to adenosine diphosphate (ADP) or thrombin were normal. Perfusing whole blood from transgenic mice over collagen fibers at a shear rate of 1000 seconds ؊1 resulted in increased P2X 1 -dependent aggregate formation and phosphatidylserine exposure. Platelet hyperreactivity to collagen was correlated with up-regulated extracellular signal-regulated kinase 2 (ERK2) phosphorylation. Accordingly, the MEK1/2 inhibitor U0126 potently inhibited the collagen-induced aggregation of transgenic platelets when stirred or when perfused over a collagen surface. In a viscometer, shear stress caused potent aggregation of transgenic platelets under conditions in which wild-type platelets did not aggregate. In an in vivo model of thromboembolism consisting of intravenous injection of a low dose of collagen plus epinephrine, transgenic mice died more readily than wild-type mice. Preinjection of U0126 not only fully protected transgenic mice against thrombosis, it also enhanced the survival of wild-type mice injected with a higher collagen dose. Hence, the platelet P2X 1 ion channel plays a role in hemostasis and thrombosis through its participation in collagen-, thromboxane A 2 -, and shear stress-triggered platelet responses. Activation of the ERK2 pathway is instrumental in these processes. (Blood. 2003;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.