We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes. The new evaluations are based on both experimental data and nuclear reaction theory predictions.The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, 6 Li, 10 B, Au and for 235,238 U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron-and proton-induced reactions up to an energy of 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; and (10) New methods developed to provide uncertainties and covariances, together with covariance evaluations for some sample cases.The paper provides an overview of this library, consisting of 14 sublibraries in the same, ENDF-6 format, as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched U thermal assemblies is removed; (b) The 238 U, 208 Pb, and 9 Be reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good agreement for simulations of highly enriched uranium assemblies is preserved; (d) The underprediction of fast criticality of 233,235 U and 239 Pu assemblies is removed; and (e) The intermediate spectrum critical assemblies are predicted more accurately.We anticipate that the new library will play an important role in nuclear technology applications, including transport simulations supporting national security, nonproliferation, advanced reactor and fuel cycle concepts, criticality safety, medicine, space applications, nuclear astrophysics, and nuclear physics facility design. The ENDF/B-VII.0 library is archived at the National Nuclear Data Center,
Abstract. The status of the Joint Evaluated Fission and Fusion file (JEFF) is described. JEFF-3.1 comprises a significant update of actinide evaluations, materials evaluations that have emerged from various European nuclear data projects, the activation library JEFF-3.1/A, the decay data and fission yield sub-libraries, and fusion-related data files from the EFF project. The revisions were motivated by the availability of new measurements, modelling capabilities and trends from integral experiments. Validations have been performed, mainly for criticality, reactivity temperature coefficients, fuel inventory and shielding of thermal and fast systems. Compared with earlier releases, JEFF-3.1 provides improved performance with respect to a variety of scientific and industrial applications. Following on from the public release of JEFF-3.1, the French nuclear power industry has selected this suite of nuclear applications libraries for inclusion in their production codes.
The neutron resonance parameters of 238 U were obtained in the energy range 0 to 20 keV from a sequential SAMMY [1] analysis of the most recent high-resolution neutron transmission and neutron capture cross-section measurements. Special care was taken in the analysis of the lowest s-wave resonances leading to resonance parameters slightly different from those of ENDF/B-VI (Moxon-Sowerby resonance parameters [2]). The resolved-resonance range was extended to 20 keV, taking advantage of the high-resolution neutron transmission data of Harvey [3] and neutron capture data of Macklin et al. [4]. Preliminary integral tests were performed with the new resonance parameters; thermal low-enriched benchmark calculations show an improvement of the k e f f prediction, mainly due to a 1.5% decrease of the capture cross section at 0.0253 eV and about a 0.4% decrease of the effective shielded resonance capture integral.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.