Artificial night lighting is expanding globally, but its ecological consequences remain little understood. Animals often use changes in day length as a cue to time seasonal behaviour. Artificial night lighting may influence the perception of day length, and may thus affect both circadian and circannual rhythms. Over a 3.5 month period, from winter to breeding, we recorded daily singing activity of six common songbird species in 12 woodland sites, half of which were affected by street lighting. We previously reported on analyses suggesting that artificial night lighting affects the daily timing of singing in five species. The main aim of this study was to investigate whether the presence of artificial night lighting is also associated with the seasonal occurrence of dawn and dusk singing. We found that in four species dawn and dusk singing developed earlier in the year at sites exposed to light pollution. We also examined the effects of weather conditions and found that rain and low temperatures negatively affected the occurrence of dawn and dusk singing. Our results support the hypothesis that artificial night lighting alters natural seasonal rhythms, independently of other effects of urbanization. The fitness consequences of the observed changes in seasonal timing of behaviour remain unknown.
The effects of artificial night lighting on animal behaviour and fitness are largely unknown. Most studies report short-term consequences in locations that are also exposed to other anthropogenic disturbance. We know little about how the effects of nocturnal illumination vary with different light colour compositions. This is increasingly relevant as the use of LED lights becomes more common, and LED light colour composition can be easily adjusted. We experimentally illuminated previously dark natural habitat with white, green and red light, and measured the effects on life-history decisions and fitness in two free-living songbird species, the great tit ( Parus major ) and pied flycatcher ( Ficedula hypoleuca ) in two consecutive years. In 2013, but not in 2014, we found an effect of light treatment on lay date, and of the interaction of treatment and distance to the nearest lamp post on chick mass in great tits but not in pied flycatchers. We did not find an effect in either species of light treatment on breeding densities, clutch size, probability of brood failure, number of fledglings and adult survival. The finding that light colour may have differential effects opens up the possibility to mitigate negative ecological effects of nocturnal illumination by using different light spectra.
The disruption of daily rhythms is one of the most studied ecological consequences of light pollution. Previous work showed that several songbird species initiated dawn song earlier in areas with light pollution. However, the mechanisms underlying this shift are still unknown. Individuals may immediately adjust their timing of singing to the presence of artificial light (behavioural plasticity), but the observed effect may also be due to phenotype-dependent habitat choice, effects of conditions during early life or micro-evolution. The main aim of this study was to experimentally investigate how males of four common passerine species respond to day-to-day variation in the presence of artificial night lighting in terms of the timing of singing. During two consecutive breeding seasons, we manipulated the presence of light throughout the night in a cyclic fashion in several naturally undisturbed forest patches. We show that individuals of all four species immediately and reversibly adjusted their onset of dawn singing in response to artificial light. The effect was strongest in the European robin, but relatively small in the blue tit, the great tit and the blackbird. The effect in the latter two species was smaller than expected from the correlational studies. This may be coincidence (small sample size of this study), but it could also indicate that there are longer-term effects of living in light-polluted urban areas on timing of dawn singing, or that birds use compensatory behaviours such as light avoidance. We found no evidence that our light treatment had carryover effects into the subsequent dark period, but robins progressively advanced their dawn singing during the light treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.