Multi-replicA decoding using corRelation baSed LocALisAtion (MARSALA) is a recent random access technique designed for satellite return links. It follows the multiple transmission and interference cancellation scheme of Contention Resolution Diversity Slotted Aloha (CRDSA). In addition, at the receiver side, MARSALA uses autocorrelation to localise replicas of a same packet so as to coherently combine them. Previous work has shown good performance of MARSALA with an assumption of ideal channel state information and perfectly coherent combining of the different replicas of a given packet. However, in a real system, synchronisation errors such as timing offsets and phase shifts between the replicas on separate timeslots will result in less constructive combining of the received signals. This paper describes a method to estimate and compensate the timing and phase differences between the replicas, prior to their combination. Then, the impact of signal misalignment in terms of residual timing offsets and phase shifts, is modeled and evaluated analytically. Finally, the performance of MARSALA in realistic channel conditions is assessed through simulations, and compared to CRDSA in various scenarios.
In recent random access methods used for satellite communications, collisions between packets are not considered as destructive. In fact, to deal with the collision problem, successive interference cancellation is performed at the receiver. Generally, it is assumed that the receiver has perfect knowledge of the interference. In practice, the interference term is affected by the transmission channel parameters, i.e., channel attenuation, timing offsets, frequency offsets and phase shifts, and needs to be accurately estimated and canceled to avoid performance degradation. In this paper, we study the performance of an enhanced channel estimation technique combining estimation using an autocorrelation based method and the Expectation-Maximization algorithm integrated in a joint estimation and decoding scheme. We evaluate the effect of residual estimation errors after successive interference cancellation. To validate our experimental results, we compare them to the Cramer-Rao lower bounds for the estimation of channel parameters in case of superimposed signals.
In this paper, we consider the problem of IP packet scheduling over a GSE/DVB-S2 satellite link. Scheduling flows with QoS requirements has been widely addressed in the mobile field, especially in LTE and WiMAX, with emphasis on fairness, efficiency and dynamic adaptation to transmission conditions. We focus on the well-known empirical scheduling rules known as PF, M-LWDF and EXP-PF for both QoS and MODCOD scheduling, and present how they were adapted to GSE/DVB-S2 encapsulation. Some of the challenging issues yielded by DVB-S2 are tackled, such as joint scheduling of both QoS and MODCODs, concatenation of numerous user packets into one BBFrame and fairness issues introduced by the scheduling algorithm, especially when dealing with various transmission scenarios. We show the potential of our scheduling algorithm using several simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.