Portland cement reacts with water to form an amorphous paste through a chemical reaction called hydration. In concrete the formation of pastes causes the mix to harden and gain strength to form a rock-like mass. Within this process lies the key to a remarkable peculiarity of concrete: it is plastic and soft when newly mixed, strong and durable when hardened. These qualities explain why one material, concrete, can build skyscrapers, bridges, sidewalks and superhighways, houses, and dams. The character of the concrete is determined by the quality of the paste. Creep and shrinkage of concrete specimens occur during the loss and gain of water from cement paste. To better understand the role of water in mature concrete, a series of quasielastic neutron scattering (QENS) experiments were carried out on cement pastes with water/cement ratio varying between 0.32 and 0.6. The samples were cured for about 28 days in sealed containers so that the initial water content would not change. These experiments were carried out with an actual sample of Portland cement rather than with the components of cement studied by other workers. The QENS spectra differentiated between three different water interactions: water that was chemically bound into the cement paste, the physically bound or "glassy water" that interacted with the surface of the gel pores in the paste, and unbound water molecules that are confined within the larger capillary pores of cement paste. The dynamics of the "glassy" and "unboud" water in an extended time scale, from a hundred picoseconds to a few nanoseconds, could be clearly differentiated from the data. While the observed motions on the picosecond time scale are mainly stochastic reorientations of the water molecules, the dynamics observed on the nanosecond range can be attributed to long-range diffusion. Diffusive motion was characterized by diffusion constants in the range of (0.6-2) 10(-9) m(2)/s, with significant reduction compared to the rate of diffusion for bulk water. This reduction of the water diffusion is discussed in terms of the interaction of the water with the calcium silicate gel and the ions present in the pore water.
Gas clathrate hydrates or gas hydrates are made of H-bonded water molecules forming cages, within which gaseous (guest) molecules are encapsulated. The formed clathrate structures, which may be metastable, depend on the nature and on the partitioning of the guest molecules in the water cage. This work focuses on the structural and vibrational properties of nitrogen hydrate in its two clathrate forms (namely, SI and SII) in the thermodynamic ranges 50−200 bar and 150−270 K, together with a comprehensive analysis of the transformation from SI to SII of this gas hydrate. The thermal expansion of both structures has been measured at 1 bar, and the melting of the nitrogen hydrate has been measured at ca. 210 K at 1 bar. Moreover, the SI structure is metastable in the studied pressure region: from time-dependent neutron powder diffraction analysis, it is shown that the SI structure transforms over time to the SII structure with a rate of (1.37 ± 0.17) × 10 5 s −1 at 100 K and at 1 bar. The transformation is also characterized by an induction time (i.e., the lifetime of the pure SI structure) of 0.49 day. We have also investigated the guest partitioning of the nitrogen hydrate using highresolution Raman scattering. Vibrational bands of nitrogen molecules encapsulated in large cages are measured at lower wavenumbers than the one associated with encapsulation in small cages (by 1.1 cm −1 in SI and 0.8 cm −1 in SII). In the case of the thermodynamically stable SII phase, the dependence of the guest partitioning has been characterized as a function of the pressure−temperature conditions. Variation of the relative cage filling is demonstrated. While the small cages remain singly occupied according to previous neutron diffraction analysis, this variation is attributed to large cages of the nitrogen hydrate that easily catch or release nitrogen guest molecules. This study thus provides new opportunities for preparing nitrogen gas hydrates with a "targeted" structure and relative cage filling not only by varying the pressure and temperature but also by playing with the structural metastability.
PACS. 75.30.Et -Exchange and superexchange interactions. PACS. 75.50.Xx -Molecular magnets. PACS. 78.70.Nx -Neutron inelastic scattering. Abstract. -We report an Inelastic Neutron Scattering (INS) study of the fully deuterated molecular compound K6[V IV15 As6O42]·9D2O (V15). Due to geometrical frustration, the essential physics at low temperatures of the V15 cluster containing 15 coupled V 4+ (S=1/2) is determined by three weakly coupled spin-1/2 on a triangle. The INS spectra at low-energy allow us to directly determine the effective exchange coupling J0 = 0.211(2) meV within the triangle and the gap 2∆ = 0.035(2) meV between the two spin-1/2 doublets of the ground state. Results are discussed in terms of deviations from trigonal symmetry and Dzyaloshinskii-Moriya (DM) interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.