We define a Galois structure on the category of pairs of equivalence relations in an exact Mal'tsev category, and characterize central and double central extensions in terms of higher commutator conditions. These results generalize both the ones related to the abelianization functor in exact Mal'tsev categories, and the ones corresponding to the reflection from the category of internal reflexive graphs to the subcategory of internal groupoids. Some examples and applications are given in the categories of groups, precrossed modules, precrossed Lie algebras, and compact groups.
We show that the Peiffer commutator previously defined by Cigoli, Mantovani and Metere can be used to characterize central extensions of precrossed modules with respect to the subcategory of crossed modules in any semi-abelian category satisfying an additional property. We prove that this commutator also characterizes double central extensions, obtaining then some Hopf formulas for the second and third homology objects of internal precrossed modules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.