We enrolled six patients suffering from refractory chronic cluster headache in a pilot trial of neurostimulation of the ipsilateral ventroposterior hypothalamus using the stereotactic coordinates published previously. After the varying durations needed to determine optimal stimulation parameters and a mean follow-up of 14.5 months, the clinical outcome is excellent in three patients (two are pain-free; one has fewer than three attacks per month), but unsatisfactory in one patient, who only has had transient remissions. Mean voltage is 3.28 V, diplopia being the major factor limiting its increase. When the stimulator was switched off in one pain-free patient, attacks resumed after 3 months until it was turned on again. In one patient the implantation procedure had to be interrupted because of a panic attack with autonomic disturbances. Another patient died from an intracerebral haemorrhage that developed along the lead tract several hours after surgery; there were no other vascular changes on post-mortem examination. After 1 month, the hypothalamic stimulation induced resistance against the attack-triggering agent nitroglycerin and tended to increase pain thresholds at extracephalic, but not at cephalic, sites. It had no detectable effect on neurohypophyseal hormones or melatonin excretion. We conclude that hypothalamic stimulation has remarkable efficacy in most, but not all, patients with treatment-resistant chronic cluster headache. Its efficacy is not due to a simple analgesic effect or to hormonal changes. Intracerebral haemorrhage cannot be neglected in the risk evaluation of the procedure. Whether it might be more prevalent than in deep-brain stimulation for movement disorders remains to be determined.
The way in which medication overuse transforms episodic migraine into chronic daily headache is unknown. To search for candidate brain areas involved in this process, we measured glucose metabolism with 18-FDG PET in 16 chronic migraineurs with analgesic overuse before and 3 weeks after medication withdrawal and compared the data with those of a control population (n = 68). Before withdrawal, the bilateral thalamus, orbitofrontal cortex (OFC), anterior cingulate gyrus, insula/ventral striatum and right inferior parietal lobule were hypometabolic, while the cerebellar vermis was hypermetabolic. All dysmetabolic areas recovered to almost normal glucose uptake after withdrawal of analgesics, except the OFC where a further metabolic decrease was found. A subanalysis showed that most of the orbitofrontal hypometabolism was due to eight patients overusing combination analgesics and/or an ergotamine-caffeine preparation. Medication overuse headache is thus associated with reversible metabolic changes in pain processing structures like other chronic pain disorders, but also with persistent orbitofrontal hypofunction. The latter is known to occur in drug dependence and could predispose subgroups of migraineurs to recurrent analgesic overuse.
Riboflavin, which improves energy metabolism similarly to coenzyme Q10 (CoQ10), is effective in migraine prophylaxis. We compared CoQ10 (3 x 100 mg/day) and placebo in 42 migraine patients in a double-blind, randomized, placebo-controlled trial. CoQ10 was superior to placebo for attack-frequency, headache-days and days-with-nausea in the third treatment month and well tolerated; 50%-responder-rate for attack frequency was 14.4% for placebo and 47.6% for CoQ10 (number-needed-to-treat: 3). CoQ10 is efficacious and well tolerated.
Between attacks, migraine patients are characterized by potentiation instead of habituation of stimulation-evoked cortical responses. It is debated whether this is due to increased or decreased cortical excitability. We have studied the changes in visual cortex excitability by recording pattern-reversal visual evoked potentials (PR-VEP) after low- and high-frequency repetitive transcranial magnetic stimulation (rTMS), known respectively for their inhibitory and excitatory effect on the cortex. In 30 patients (20 migraine without, 10 with aura) and 24 healthy volunteers, rTMS of the occipital cortex was performed with a focal figure-of-eight magnetic coil (Magstim). Nine hundred pulses were delivered randomly at 1 or 10 Hz in two separate sessions. Stimulus intensity was set to the phosphene threshold or to 110% of the motor threshold if no phosphenes were elicited. Before and after rTMS, PR-VEP were averaged sequentially in six blocks of 100zztieresponses during uninterrupted 3.1 Hz stimulation. In healthy volunteers, PR-VEP amplitude was significantly decreased in the first block after 1 Hz rTMS and the habituation normally found in successive blocks after sustained stimulation was significantly attenuated. In migraine patients, 10 Hz rTMS was followed by a significant increase of first block PR-VEP amplitude and by a reversal to normal habituation of the potentiation (or dishabituation) characteristic of the disorder. This effect was similar in both forms of migraine and lasted for at least 9 min. There were no significant changes of PR-VEP amplitudes after 1 Hz rTMS in migraineurs and after 10 Hz rTMS in healthy volunteers, nor after sham stimulation. The recovery of a normal PR-VEP habituation pattern after high-frequency rTMS is probably due to activation of the visual cortex and the dishabituation in healthy volunteers to cortical inhibition. We conclude, therefore, that the deficient interictal PR-VEP habituation in migraine is due to a reduced, and not to an increased, pre-activation excitability level of the visual cortex.
A deficit of habituation in cortical information processing, including somatosensory evoked potentials (SSEPs), is the most consistent neurophysiological abnormality in migraine patients between attacks. To explore further the mechanisms underlying this interictal neural dysfunction, we have studied the high-frequency oscillations (HFOs) embedded in SSEPs because they are thought to reflect spike activity in thalamo-cortical cholinergic fibres (early HFOs) and in cortical inhibitory GABAergic interneurons (late HFOs). Untreated migraine patients with (MA) and without (MO) aura were recorded during (n = 13: nine MO, four MA) and between attacks (n = 29: 14 MO, 15 MA) and compared with healthy volunteers. SSEPs were filtered off-line (digital band-pass between 450 and 750 Hz) to extract the two HFO bursts from the broad-band contralateral N20 somatosensory cortical response obtained by median nerve stimulation. In both migraine groups, amplitudes and latencies of conventional broad-band SSEPs recorded interictally from cervical and parietal active electrodes were not significantly different from those found in healthy volunteers. In contrast, maximum peak-to-peak amplitude and area under the rectified curve of the early HFO burst were significantly smaller in both MA and MO patients than in healthy volunteers. There was no significant difference in the later HFO burst between migraineurs and healthy volunteers. During attacks, all electrophysiological measurements in migraineurs were similar to those found in healthy volunteers. Thalamo-cortical activation, as reflected by the early SSEP HFO burst, may thus be reduced in migraine interictally, but normalizes during an attack, whereas intracortical inhibition, as indexed by the late HFO burst, is normal at any time. This supports the hypothesis that the habituation deficit in migraineurs is due to a reduced pre-activation level of sensory cortices and not to increased cortical excitability or reduced intracortical inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.