Abstract. -The object of this paper is to describe an explicit two-parameter family of logarithmic flat connections over the complex projective plane. These connections have dihedral monodromy and their polar locus is a prescribed quintic composed of a conic and three tangent lines. By restricting them to generic lines we get an algebraic family of isomonodromic deformations of the five-punctured sphere. This yields new algebraic solutions of a Garnier system. Finally, we use the associated Riccati oneforms to construct and prove the integrability (in the transversally projective sense) of a subfamily of Lotka-Volterra foliations.Résumé. -Le but de cet article est de décrire une famille explicite à deux paramètres de connexions logarithmiques plates au dessus du plan projectif complexe. Ces connexions sont à monodromie diédrale et leur lieu polaire est une quintique prescrite, composée d'une conique et de trois droites tangentes. Par restriction aux droites génériques, on obtient alors une famille algébrique de déformations isomonodromiques de la sphère à cinq trous. Ceci livre de nouvelles solutions algébriques d'un système de Garnier. Enfin, nous utilisons les formes de Riccati associées à ces connexions pour construire et montrer l'intégrabilité (au sens transversalement projectif) d'une sous-famille de feuilletages de Lotka-Volterra.
In this paper, we set up a "dictionary" between discrete Schrödinger operators and holomorphic dynamics on certain affine cubic surfaces, building on previous work by Cantat, Damanik and Gorodetski. To achieve this, we make use of potential theory: a detailed description of the dynamical Green functions is obtained; then basic results concerning the equilibrium measures and the Green functions of compact subsets of C are used to transfer statements from the dynamical context to the Schrödinger one. This provides a new viewpoint on several recent theorems.
The object of this paper is to describe an explicit two-parameter family of logarithmic flat connections over the complex projective plane. These connections have dihedral monodromy and their polar locus is a prescribed quintic composed of a conic and three tangent lines. By restricting them to generic lines we get an algebraic family of isomonodromic deformations of the five-punctured sphere. This yields new algebraic solutions of a Garnier system. Finally, we use the associated Riccati oneforms to construct and prove the integrability (in the transversally projective sense) of a subfamily of Lotka-Volterra foliations.Résumé. -Le but de cet article est de décrire une famille explicite à deux paramètres de connexions logarithmiques plates au dessus du plan projectif complexe. Ces connexions sont à monodromie diédrale et leur lieu polaire est une quintique prescrite, composée d'une conique et de trois droites tangentes. Par restriction aux droites génériques, on obtient alors une famille algébrique de déformations isomonodromiques de la sphère à cinq trous. Ceci livre de nouvelles solutions algébriques d'un système de Garnier. Enfin, nous utilisons les formes de Riccati associées à ces connexions pour construire et montrer l'intégrabilité (au sens transversalement projectif) d'une sous-famille de feuilletages de Lotka-Volterra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.