Behavioral data, collected from our daily interactions with technology, have driven scientific advances. Yet, the collection and sharing of this data raise legitimate privacy concerns, as individuals can often be reidentified. Current identification attacks, however, require auxiliary information to roughly match the information available in the dataset, limiting their applicability. We here propose an entropy-based profiling model to learn time-persistent profiles. Using auxiliary information about a single target collected over a nonoverlapping time period, we show that individuals are correctly identified 79% of the time in a large location dataset of 0.5 million individuals and 65.2% for a grocery shopping dataset of 85,000 individuals. We further show that accuracy only slowly decreases over time and that the model is robust to state-of-the-art noise addition. Our results show that much more auxiliary information than previously believed can be used to identify individuals, challenging deidentification practices and what currently constitutes legally anonymous data.
Algorithms are now playing a central role in digital marketplaces, setting prices and automatically responding in real time to competitors' behavior. The deployment of automated pricing algorithms is scrutinized by economists and regulatory agencies, concerned about its impact on prices and competition. Existing research has so far been limited to cases where all firms use the same algorithm, suggesting that anti-competitive behaviour might spontaneously arise in that setting. Here, we introduce and study a general anti-competitive mechanism, adversarial collusion, where one firm manipulates other sellers that use their own pricing algorithm. We propose a network-based framework to model the strategies of pricing algorithms on iterated 2 and 3-firm markets. In this framework, an attacker learns to endogenize competitors' algorithms and then derive a strategy to artificially increase its profit at the expense of competitors. Facing a drastic loss of profits, competitors will eventually intervene and revise or turn off their pricing algorithm. To disincentivize this intervention, we show that the attacker can instead unilaterally increase both its profits and the profits of competitors. This leads to a collusive outcome with symmetric and supra-competitive profits, sustainable in the long run. Together, our findings highlight the need for policymakers and regulatory agencies to consider adversarial manipulations of algorithmic pricing, which might currently fall outside of the scope of current competition laws.
Immersive audio technologies, ranging from rendering spatialized sounds accurately to efficient room simulations, are vital to the success of augmented and virtual realities. To produce realistic sounds through headphones, the human body and head must both be taken into account. However, the measurement of the influence of the external human morphology on the sounds incoming to the ears, which is often referred to as head-related transfer function (HRTF), is expensive and time-consuming. Several datasets have been created over the years to help researchers work on immersive audio; nevertheless, the number of individuals involved and amount of data collected is often insufficient for modern machine-learning approaches. Here, the SONICOM HRTF dataset is introduced to facilitate reproducible research in immersive audio. This dataset contains the HRTF of 120 subjects, as well as headphone transfer functions; 3D scans of ears, heads, and torsos; and depth pictures at different angles around subjects' heads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.