We study the relative entropy density for generalized Gibbs measures. We first show its existence and obtain a familiar expression in terms of entropy and relative energy for a class of "almost Gibbsian measures" (almost sure continuity of conditional probabilities). For quasilocal measures, we obtain a full variational principle. For the joint measures of the random field Ising model, we show that the weak Gibbs property holds, with an almost surely rapidly decaying translation-invariant potential. For these measures we show that the variational principle fails as soon as the measures lose the almost Gibbs property. These examples suggest that the class of weakly Gibbsian measures is too broad from the perspective of a reasonable thermodynamic formalism.
We consider an SOS (solid-on-solid) model, with spin values from the set of all integers, on a Cayley tree of order k ≥ 2 and are interested in translation-invariant gradient Gibbs measures (GGMs) of the model. Such a measure corresponds to a boundary law (a function defined on vertices of the Cayley tree) satisfying a functional equation. In the ferromagnetic SOS case on the binary tree we find up to five solutions to a class of 4-periodic boundary law equations (in particular, some two periodic ones). We show that these boundary laws define up to four distinct GGMs. Moreover, we construct some 3-periodic boundary laws on the Cayley tree of arbitrary order k ≥ 2, which define GGMs different from the 4-periodic ones.Mathematics Subject Classifications (2010). 82B26 (primary); 60K35 (secondary)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.