Aims/hypothesis The pathogenic role of excessive vascular endothelial growth factor (VEGF)-A in diabetic nephropathy has not been defined. We sought to test whether increased podocyte VEGF-A signalling determines the severity of diabetic glomerulopathy. Methods Podocyte-specific, doxycycline-inducible Vegf164 (the most abundant Vegfa isoform) overexpressing adult transgenic mice were made diabetic with low doses of streptozotocin and examined 12 weeks after onset of diabetes. We studied diabetic and non-diabetic transgenic mice fed a standard or doxycycline-containing diet. VEGF-A and albuminuria were measured by ELISA, creatinine was measured by HPLC, renal morphology was examined by light and electron microscopy, and gene expression was assessed by quantitative PCR, immunoblotting and immunohistochemistry. Results Podocyte Vegf164 overexpression in our mouse model of diabetes resulted in advanced diabetic glomerulopathy, characterised by Kimmelstiel–Wilson-like nodular glomerulosclerosis, microaneurysms, mesangiolysis, glomerular basement membrane thickening, podocyte effacement and massive proteinuria associated with hyperfiltration. It also led to increased VEGF receptor 2 and semaphorin3a levels, as well as nephrin and matrix metalloproteinase-2 downregulation, whereas circulating VEGF-A levels were similar to those in control diabetic mice. Conclusions/interpretation Collectively, these data demonstrate that increased podocyte Vegf164 signalling dramatically worsens diabetic nephropathy in a streptozotocin-induced mouse model of diabetes, resulting in nodular glomerulosclerosis and massive proteinuria. This suggests that local rather than systemic VEGF-A levels determine the severity of diabetic nephropathy and that semaphorin3a signalling and matrix metalloproteinase-2 dysregulation are mechanistically involved in severe diabetic glomerulopathy.
Recovery after acute kidney injury is impaired in the elderly, but mechanistic information regarding why this occurs is limited. In this study, aged mouse kidneys displayed a reduced epithelial proliferative reserve in vivo and in vitro. Microarray analysis identified increased expression of zinc-␣ (2)-glycoprotein (Zag) in aged proximal tubular cells. The addition of recombinant Zag to primary renal epithelial cell cultures decreased proliferation, whereas knockdown of Zag increased proliferation. In vivo, systemic small interference RNA suppressed expression of Zag in the mouse proximal tubule; this increased the rate of epithelial cell proliferation after renal ischemia/reperfusion in aged mice but also increased parenchymal fibrosis. These results demonstrate that increased Zag expression in the aged kidney acts to suppress the proliferative response to injury and introduce Zag as a modifier of the aging phenotype.
After kidney ischemia/reperfusion (I/R) injury, monocytes home to the kidney and differentiate into activated macrophages. Whereas proinflammatory macrophages contribute to the initial kidney damage, an alternatively activated phenotype can promote normal renal repair. The microenvironment of the kidney during the repair phase mediates the transition of macrophage activation from a proinflammatory to a reparative phenotype. In this study, we show that macrophages isolated from murine kidneys during the tubular repair phase after I/R exhibit an alternative activation gene profile that differs from the canonical alternative activation induced by IL-4-stimulated STAT6 signaling. This unique activation profile can be reproduced in vitro by stimulation of bone marrow-derived macrophages with conditioned media from serum-starved mouse proximal tubule cells. Secreted tubular factors were found to activate macrophage STAT3 and STAT5 but not STAT6, leading to induction of the unique alternative activation pattern. Using STAT3-deficient bone marrow-derived macrophages and pharmacologic inhibition of STAT5, we found that tubular cell-mediated macrophage alternative activation is regulated by STAT5 activation. Both in vitro and after renal I/R, tubular cells expressed GM-CSF, a known STAT5 activator, and this pathway was required for in vitro alternative activation of macrophages by tubular cells. Furthermore, administration of a neutralizing antibody against GM-CSF after renal I/R attenuated kidney macrophage alternative activation and suppressed tubular proliferation. Taken together, these data show that tubular cells can instruct macrophage activation by secreting GM-CSF, leading to a unique macrophage reparative phenotype that supports tubular proliferation after sterile ischemic injury.
Acute kidney injury (AKI) represents the most frequent complication after cardiac surgery. Macrophage migration inhibitory factor (MIF) is a stress-regulating cytokine that was shown to protect the heart from myocardial ischemia-reperfusion injury, but its role in the pathogenesis of AKI remains unknown. In an observational study, serum and urinary MIF was quantified in 60 patients scheduled for elective conventional cardiac surgery with the use of cardiopulmonary bypass. Cardiac surgery triggered an increase in MIF serum concentrations, and patients with high circulating MIF (>median) 12 hours after surgery had a significantly reduced risk of developing AKI (relative risk reduction, 72.7%; 95% confidence interval, 12 to 91.5%; = 0.03). Experimental AKI was induced in wild-type and mice by 30 min of ischemia followed by 6 or 24 hours of reperfusion, or by rhabdomyolysis. -deficient mice exhibited increased tubular cell injury, increased regulated cell death (necroptosis and ferroptosis), and enhanced oxidative stress. Therapeutic administration of recombinant MIF after ischemia-reperfusion in mice ameliorated AKI. In vitro treatment of tubular epithelial cells with recombinant MIF reduced cell death and oxidative stress as measured by glutathione and thiobarbituric acid reactive substances in the setting of hypoxia. Our data provide evidence of a renoprotective role of MIF in experimental ischemia-reperfusion injury by protecting renal tubular epithelial cells, consistent with our observation that high MIF in cardiac surgery patients is associated with a reduced incidence of AKI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.