Additive manufacturing and digital fabrication bring new horizons to concrete and cementbased material construction. 3D printing inspired construction techniques that have recently been developed at laboratory scale for cement-based materials. This study aims to investigate the role of the structural build-up properties of cement-based materials in such a layer by layer construction technique. As construction progresses, the cement-based materials become harder with time. The mechanical strength of the cement-based materials must be sufficient to sustain the weight of the layers subsequently deposited. It follows that the comparison of the mechanical strength, which evolves with time (i.e. structural buildup), with the loading due to layers subsequently deposited, can be expected to provide the optimal rate of layer by layer construction. A theoretical framework has been developed to propose a method of optimization of the building rate, which is experimentally validated in a layer-wise built column.
This article offers a comprehensive overview of the underlying physics relevant to an understanding of materials processing during the various production steps in extrusion-based 3D Concrete Printing (3DCP). Understanding the physics governing the processes is an important step toward the purposeful design and optimization of 3DCP systems as well as their efficient and robust process control. For some processes, analytical formulas based on the relevant physics have already enabled reasonable predictions with respect to material flow behavior and buildability, especially in the case of relatively simple geometries. The existing research in the field was systematically compiled by the authors in the framework of the activities of the RILEM Technical Committee 276 "Digital fabrication with cementbased materials". However, further research is needed to develop reliable tools for the quantitative analysis of the entire process chain. To achieve this, experimental efforts for the characterization of material properties need to go hand in hand with comprehensive numerical simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.