Among prevalent tribological failures, notably in rolling element bearings for wind turbines, an unusual rolling/sliding contact fatigue failure mode has been identified as white etching cracks. White etching cracks are broad subsurface three-dimensional branching crack networks bordered by white etching microstructure, eventually leading to flaking. Reproduction of the failure mode on standard rolling element bearings test rigs has not been mastered yet except with artificial hydrogen charging. Even though these failures have been reported for several decades, there is no evident common denominator in different occurrences. Hence, initiation and propagation mechanisms are not yet fully understood in application. Analyses of the contact conditions of a standard rolling element bearings test rig reproducing white etching cracks on standard and hydrogen precharged inner rings reveal that hydrogen charging seems to modify the white etching cracks initiation mechanism. Based on fractographs, serial sectioning, and scanning electron microscopic analyses, surface initiation and propagation mechanisms are proposed, including influent drivers and possible preventive techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.