Mossy fibers are the sole excitatory projection from dentate gyrus granule cells to the hippocampus, where they release glutamate, dynorphin, and zinc. In addition, mossy fiber terminals show intense immunoreactivity for the inhibitory neurotransmitter GABA. Fast inhibitory transmission at mossy fiber synapses, however, has not previously been reported. Here, we show that electrical or chemical stimuli that recruit dentate granule cells elicit monosynaptic GABA(A) receptor-mediated synaptic signals in CA3 pyramidal neurons. These inhibitory signals satisfy the criteria that distinguish mossy fiber-CA3 synapses: high sensitivity to metabotropic glutamate receptor agonists, facilitation during repetitive stimulation, and NMDA receptor-independent long-term potentiation. GABAergic transmission from the dentate gyrus to CA3 has major implications not only for information flow into the hippocampus but also for developmental and pathological processes involving the hippocampus.
Heteromeric kainate receptors (KARs) containing both glutamate receptor 6 (GluR6) and KA2 subunits are involved in KAR-mediated EPSCs at mossy fiber synapses in CA3 pyramidal cells. We report that endogenous glutamate, by activating KARs, reversibly inhibits the slow Ca 2ϩ -activated K ϩ current I sAHP and increases neuronal excitability through a G-protein-coupled mechanism. Using KAR knockout mice, we show that KA2 is essential for the inhibition of I sAHP in CA3 pyramidal cells by low nanomolar concentrations of kainate, in addition to GluR6. In GluR6 Ϫ/Ϫ mice, both ionotropic synaptic transmission and inhibition of I sAHP by endogenous glutamate released from mossy fibers was lost. In contrast, inhibition of I sAHP was absent in KA2 Ϫ/Ϫ mice despite the preservation of KAR-mediated EPSCs. These data indicate that the metabotropic action of KARs did not rely on the activation of a KAR-mediated inward current. Biochemical analysis of knock-out mice revealed that KA2 was required for the interaction of KARs with G␣ q/11 -proteins known to be involved in I sAHP modulation. Finally, the ionotropic and metabotropic actions of KARs at mossy fiber synapses were differentially sensitive to the competitive glutamate receptor ligands kainate (5 nM) and kynurenate (1 mM). We propose a model in which KARs could operate in two modes at mossy fiber synapses: through a direct ionotropic action of GluR6, and through an indirect G-protein-coupled mechanism requiring the binding of glutamate to KA2.
Presynaptic GABAA receptors modulate synaptic transmission in several areas of the CNS but are not known to have this action in the cerebral cortex. We report that GABAA receptor activation reduces hippocampal mossy fibers excitability but has the opposite effect when intracellular Cl- is experimentally elevated. Synaptically released GABA mimics the effect of exogenous agonists. GABAA receptors modulating axonal excitability are tonically active in the absence of evoked GABA release or exogenous agonist application. Presynaptic action potential-dependent Ca2+ transients in individual mossy fiber varicosities exhibit a biphasic dependence on membrane potential and are altered by GABAA receptors. Antibodies against the alpha2 subunit of GABAA receptors stain mossy fibers. Axonal GABAA receptors thus play a potentially important role in tonic and activity-dependent heterosynaptic modulation of information flow to the hippocampus.
The potassium-chloride co-transporter KCC2, encoded by SLC12A5, plays a fundamental role in fast synaptic inhibition by maintaining a hyperpolarizing gradient for chloride ions. KCC2 dysfunction has been implicated in human epilepsy, but to date, no monogenic KCC2-related epilepsy disorders have been described. Here we show recessive loss-of-function SLC12A5 mutations in patients with a severe infantile-onset pharmacoresistant epilepsy syndrome, epilepsy of infancy with migrating focal seizures (EIMFS). Decreased KCC2 surface expression, reduced protein glycosylation and impaired chloride extrusion contribute to loss of KCC2 activity, thereby impairing normal synaptic inhibition and promoting neuronal excitability in this early-onset epileptic encephalopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.