Porous materials are widely used in industry for applications that include chemical separations and gas scrubbing. These materials are typically porous solids, though the liquid state can be easier to manipulate in industrial settings. The idea of combining the size-and shape-selectivity of porous domains with the fluidity of liquids is a promising one and porous liquids composed of functionalized organic cages have recently attracted attention. Here, we describe an ionic-liquid, porous, tetrahedral coordination cage. Complementing the gas-binding observed in other porous liquids, this material also encapsulates non-gaseous guestsshape-and size-selectivity was observed for a series of alcohol isomers. Three gaseous guests, chlorofluorocarbons CFC-11, CFC-12, and CFC-13, were also shown to be taken up by the liquid coordination cage with an affinity increasing with their size. We hope that these findings will lead to the synthesis of other porous liquids whose guest-uptake properties may be tailored to fulfil specific functions. Recent work has shown that persistent cavities can be engineered into liquids, lending them permanent porosity. These new materials were initially proposed by James in 2007 1 , who recognised three distinct types of them. The simplest of these, Type I permanently porous liquids, consist of rigid hosts with empty cavities that are liquid in their neat state 2,3 , without requiring an additional solvent for fluidity 4-7. Metalorganic frameworks (MOFs) have also been observed to form liquid phases that are inferred to be porous 8,9 , although the high temperatures required preclude guest binding. Previously reported examples of porous liquids have included surface-modified hollow silica spheres 2 and hollow carbon spheres 3 , crown ether-functionalised organic cages 5 , and dispersions 4, 6 or slurries 7 of porous framework materials in ionic liquids. To date, applications of these materials have focussed on gas storage and separation 2,10,11. However, we are not aware of the binding of guest molecules larger than carbon dioxide or methane inside the cavities of porous liquids, restricting the potential application of these
The light-triggered, programmable rupture of cell-sized vesicles is described, with particular emphasis on self-assembled polymersome capsules. The mechanism involves a hypotonic osmotic imbalance created by the accumulation of photogenerated species inside the lumen, which cannot be compensated owing to the low water permeability of the membrane. This simple and versatile mechanism can be adapted to a wealth of hydrosoluble molecules, which are either able to generate reactive oxygen species or undergo photocleavage. Ultimately, in a multi-compartmentalized and cell-like system, the possibility to selectively burst polymersomes with high specificity and temporal precision and to consequently deliver small encapsulated vesicles (both polymersomes and liposomes) is demonstrated.
The design and synthesis of switchable molecular tweezers based on a luminescent terpy(Pt-salphen)2 (1; terpy=terpyridine) complex is reported. Upon metal coordination, the tweezers can switch from an open "W"-shaped conformation to a closed "U"-shaped form that is adapted for selective recognition of cations. Closing of the tweezers by metal coordination (M=Zn(2+), Cu(2+), Pb(2+), Fe(2+), Hg(2+)) was monitored by (1)H NMR and/or UV/Vis titrations. During the titration, exclusive formation of the 1:1 complex [M(1)] was observed, without appearance of an intermediate 1:2 complex [M(1)2]. The crystallographic structure of the 1:1 complex was obtained with Pb(2+) and showed a distorted helical structure. Selective intercalation of Hg(2+) cations by the closed "U" form was observed. The tweezers were reopened by selective metal decoordination of the terpyridine ligand by using tris(2-aminoethyl)amine (tren) as a competitive ligand without modification of the Pt-salphen complex. Detailed photophysical studies were performed on the open and closed tweezers. Structured emission was observed in the open form from the Pt-salphen moieties, with a high quantum yield and a long lifetime. The emission is slightly modified upon closing with 1 equivalent of Zn(2+) or Hg(2+), whereas a dramatic quenching was obtained upon intercalation of additional Hg(2+).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.