Accumulative roll bonding is an advanced manufacturing process, which is capable of simultaneously refining the grain size into the nanometer regime and bonding different metallic sheet materials. Herein, homogenous aluminum/aluminum as well as heterogeneous aluminum/steel laminated metal composite (LMCs) are fabricated. The residual stresses are experimentally determined by X‐ray diffraction and the hole‐drilling method. Generally, a complex residual stress profile is found in all LMCs. The level of residual stress strongly depends on the bonded materials. Compressive residual stresses are induced in all sheets in the near surface area. These stresses range from −5 MPa in aluminum to −240 MPa in steel. In the homogenous aluminum/aluminum LMCs, compressive stresses up to −26 MPa in the softer layers and tensile stresses up to 30 MPa in the stronger layers are built up. This is different to heterogeneous aluminum/steel LMCs, where tensile stresses up to 40 MPa in the softer aluminum layers and compressive stresses up to −72 MPa in the inner harder steel layers are present. Based on the results obtained it is possible to directly design the material combination or stacking architecture of ultrafine‐grained LMCs to tailor the residual stress profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.