Stance detection concerns the classification of a writer's viewpoint towards a target. There are different task variants, e.g., stance of a tweet vs. a full article, or stance with respect to a claim vs. an (implicit) topic. Moreover, task definitions vary, which includes the label inventory, the data collection, and the annotation protocol. All these aspects hinder cross-domain studies, as they require changes to standard domain adaptation approaches. In this paper, we perform an in-depth analysis of 16 stance detection datasets, and we explore the possibility for cross-domain learning from them. Moreover, we propose an end-to-end unsupervised framework for outof-domain prediction of unseen, user-defined labels. In particular, we combine domain adaptation techniques such as mixture of experts and domain-adversarial training with label embeddings, and we demonstrate sizable performance gains over strong baselines, both (i) indomain, i.e., for seen targets, and (ii) out-ofdomain, i.e., for unseen targets. Finally, we perform an exhaustive analysis of the crossdomain results, and we highlight the important factors influencing the model performance.
The goal of stance detection is to determine the viewpoint expressed in a piece of text towards a target. These viewpoints or contexts are often expressed in many different languages depending on the user and the platform, which can be a local news outlet, a social media platform, a news forum, etc. Most research on stance detection, however, has been limited to working with a single language and on a few limited targets, with little work on cross-lingual stance detection. Moreover, non-English sources of labelled data are often scarce and present additional challenges. Recently, large multilingual language models have substantially improved the performance on many non-English tasks, especially such with a limited number of examples. This highlights the importance of model pre-training and its ability to learn from few examples. In this paper, we present the most comprehensive study of cross-lingual stance detection to date: we experiment with 15 diverse datasets in 12 languages from 6 language families, and with 6 low-resource evaluation settings each. For our experiments, we build on pattern-exploiting training (PET), proposing the addition of a novel label encoder to simplify the verbalisation procedure. We further propose sentiment-based generation of stance data for pre-training, which shows sizeable improvement of more than 6% F1 absolute in few-shot learning settings compared to several strong baselines.
Recent work has proposed multi-hop models and datasets for studying complex natural language reasoning. One notable task requiring multi-hop reasoning is fact checking, where a set of connected evidence pieces leads to the final verdict of a claim. However, existing datasets either do not provide annotations for gold evidence pages, or the only dataset which does (FEVER) mostly consists of claims which can be fact-checked with simple reasoning and is constructed artificially. Here, we study more complex claim verification of naturally occurring claims with multiple hops over interconnected evidence chunks. We: 1) construct a small annotated dataset, PolitiHop, of evidence sentences for claim verification; 2) compare it to existing multi-hop datasets; and 3) study how to transfer knowledge from more extensive in- and out-of-domain resources to PolitiHop. We find that the task is complex and achieve the best performance with an architecture that specifically models reasoning over evidence pieces in combination with in-domain transfer learning.
Understanding attitudes expressed in texts, also known as stance detection, plays an important role in systems for detecting false information online, be it misinformation (unintentionally false) or disinformation (intentionally false information). Stance detection has been framed in different ways, including (a) as a component of fact-checking, rumour detection, and detecting previously fact-checked claims, or (b) as a task in its own right. While there have been prior efforts to contrast stance detection with other related tasks such as argumentation mining and sentiment analysis, there is no existing survey on examining the relationship between stance detection and mis-and disinformation detection. Here, we aim to bridge this gap by reviewing and analysing existing work in this area, with mis-and disinformation in focus, and discussing lessons learnt and future challenges.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.