The work studies boundary value problems with non-dynamic and dynamic boundary conditions for one- and two-dimensional Boussinesq-type equations in domains representing a trapezoid, triangle, "curvilinear" trapezoid, "curvilinear" triangle, truncated cone, cone, truncated "curvilinear" cone, and "curvilinear" cone. Combining the methods of the theory of monotone operators and a priori estimates, in Sobolev classes, we have established theorems on the unique weak solvability of the boundary value problems under study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.