BSTRACTIt is unclear how changes in lipid droplet size and number are regulated -for example, it is not known whether this involves a signalling pathway or is directed by cellular lipid uptake. Here, we show that oleic acid stimulates lipid droplet formation by activating the long-chain fatty acid receptor FFAR4, which signals through a pertussis-toxin-sensitive G-protein signalling pathway involving phosphoinositide 3-kinase (PI3-kinase), AKT (also known as protein kinase B) and phospholipase D (PLD) activities. This initial lipid droplet formation is not dependent upon exogenous lipid, whereas the subsequent more sustained increase in the number of lipid droplets is dependent upon lipid uptake. These two mechanisms of lipid droplet formation point to distinct potential intervention points.
Sucrase-isomaltase (SI) is a highly N- and O-glycosylated intestinal brush border membrane protein. SI is sorted with high fidelity to the apical membrane via O-linked glycans that mediate its association with lipid rafts or detergent-resistant membranes (DRMs). Here, we show that N- and O-glycosylation and DRMs are implicated in the regulation of the function of SI in intestinal Caco-2 cells. The activities of sucrase (SUC) and isomaltase (IM) increase substantially in DRMs when N- and O-glycosylation patterns are intact. Disruption of DRMs by solubilization with Triton X-100 at 37 degrees C substantially reduces the activities of SUC and IM. Furthermore, modulation of O-glycosylation by benzyl-2-acetamido-2-deoxy-alpha-d-galactopyranoside and N-glycosylation by deoxymannojirimycin is linked to a decreased capacity of SI to associate with DRMs, with a subsequent reduction of the enzymatic activities of SUC and IM. This is the first report that reveals a direct role of N- and O-glycans in association with DRMs in regulating the function of a membrane glycoprotein.
Background: Pancreatic ductal adenocarcinoma (PDAC), which ranks forth on the cancer-related death statistics still is both a diagnostic and a therapeutic challenge. Adenocarcinoma of the exocrine human pancreas originates in most instances from malignant transformation of ductal epithelial cells, alternatively by Acinar-Ductal Metaplasia (ADM). RA96 antibody targets to a mucin M1, according to the more recent nomenclature MUC5AC, an extracellular matrix component excreted by PDAC cells. In this study, we tested the usability of multimodal nanoparticle carrying covalently coupled RA96 Fab fragments for pancreatic tumor imaging. Methods: In order to make and evaluate a novel, better targeting, theranostic nanoparticle, iron nanoparticles and the optical dye indocyanin green (ICG) were encapsulated into the cationic sphingomyelin (SM) consisting liposomes. RA-96 Fab fragment was conjugated to the liposomal surface of the nanoparticle to increase tumor homing ability. ICG and iron nanoparticle-encapsulated liposomes were studied in vitro with cells and (i) their visibility in magnetic resonance imaging (MRI), (ii) optical, (iii) Magnetic particle spectroscopy (MPS) and (iv) photoacoustic settings was tested in vitro and also in in vivo models. The targeting ability and MRI and photoacoustic visibility of the RA-96-nanoparticles were first tested in vitro cell models where cell binding and internalization was studied. In in vivo experiments liposomal nanoparticles were injected into a tail vain using an orthotopic pancreatic tumor xenograft model and subcutaneous pancreas cancer cell xenografts bearing mice to determine in vivo targeting abilities of RA-96-conjugated liposomes. Results: Multimodal liposomes could be detected by MRI, MPS and by photoacoustic imaging in addition to optical imaging showing a wide range of imaging utility. The fluorescent imaging of ICG in pancreatic tumor cells Panc89 and Capan-2 revealed increased association of ICG-encapsulated liposomes carrying RA-96 Fab fragments in vitro compared to the control liposomes without covalently linked RA-96. Fluorescent molecular tomography (FMT) studies showed increased accumulation of the RA96-targeted nanoparticles in the tumor area compared to non-targeted controls in vivo. Similar accumulation in the tumor sites could be seen with liposomal ferric particles in MRI. Fluorescent tumor signal was confirmed by using an intraoperative fluorescent imaging system which showed fluorescent labeling of pancreatic tumors. Conclusion: These results suggest that RA-96-targeted liposomes encapsulating ICG and iron nanoparticles can be used to image pancreatic tumors with a variety of optical and magnetic imaging techniques. Additionally, they might be a suitable drug delivery tool to improve treatment of PDAC patients.
One contribution of 7 to a theme issue '3D biological cultures and organoids'.The limitations of two-dimensional analysis in three-dimensional (3D) cellular imaging impair the accuracy of research findings in biological studies. Here, we report a novel 3D approach to acquisition, analysis and interpretation of tumour spheroid images. Our research interest in mesenchymal-amoeboid transition led to the development of a workflow incorporating the generation and analysis of 3D data with instant structured illumination microscopy and a new ImageJ plugin.
Cancer cell invasion is a precondition for tumour metastasis and represents one of the most devastating characteristics of cancer. The development of drugs targeting cell migration, known as migrastatics, may improve the treatment of highly invasive tumours such as glioblastoma (GBM). In this study, investigations into the role of the cell adhesion protein Cellular communication network factor 1 (CCN1, also known as CYR61) in GBM cell migration uncovered a drug resistance mechanism adopted by cells when treated with the small molecule inhibitor CCG-1423. This inhibitor binds to importin α/β inhibiting the nuclear translocation of the transcriptional co-activator MKL1, thus preventing downstream effects including migration. Despite this reported role as an inhibitor of cell migration, we found that CCG-1423 treatment did not inhibit GBM cell migration. However, we could observe cells now migrating by mesenchymal–amoeboid transition (MAT). Furthermore, we present evidence that CCN1 plays a critical role in the progression of GBM with increased expression in higher-grade tumours and matched blood samples. These findings support a potential role for CCN1 as a biomarker for the monitoring and potentially early prediction of GBM recurrence, therefore as such could help to improve treatment of and increase survival rates of this devastating disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.