We have studied the surface phonon modes of the reconstructed Si(111)-(7×7) surface by polarized Raman spectroscopy. Six surface vibration modes are observed in the frequency range between 62.5 and 420.0 cm −1 . The mode frequencies agree very well with reported calculation results. This enables their attribution to calculated eigenmodes, whose elongation patterns are dominated by specific atomic sites: the two most characteristic novel fingerprints of the (7×7) reconstruction are sharp Raman peaks from localized adatom vibrations, located at 250.9 cm −1 , and collective vibrations of the adatoms and first-and second-layer atoms, located at 420.0 cm −1 . While the sharp localized adatom vibration peak is a substantial refinement of an earlier broad spectral structure from electron energy-loss spectroscopy, no spectroscopic features were reported before in the collective-vibration frequency region. Furthermore, we observe in-plane wagging vibrations in the range from 110 to 140 cm −1 , and finally the backfolded acoustic Rayleigh wave at 62.5 cm −1 , which coincides with helium atom scattering data. Moreover, the Raman peak intensities of the surface phonons show a mode-specific dependence on the polarization directions of incident and scattered light. From this polarization dependence the relevant symmetry components in the Raman scattering process (A 1 and/or E symmetry) are deduced for each mode.
We present a joint experimental and theoretical study of the VUV-induced dynamics of H 2 O and its deuterated isotopologues in the first excited state (Ã 1 B 1) utilizing a VUV-pump VUV-probe scheme combined with ab initio classical trajectory calculations. 16-fs VUV pulses centered at 161 nm created by fifth-order harmonic generation are employed for single-shot pump-probe measurements. Combined with a precise determination of the VUV pulses' temporal profile, they provide the necessary temporal resolution to elucidate sub-10-fs dissociation dynamics in the 1+1 photon ionization time window. Ionization with a single VUV photon complements established strong-field ionization schemes by disclosing the molecular dynamics under perturbative conditions. Kinetic isotope effects derived from the pump-probe experiment are found to be in agreement with our by ab initio classical trajectory calculations, taking into account photoionization cross sections for the ground and first excited state of the water cation.
Rydberg excitations in the vacuum ultraviolet spectral range may open up molecular photoreaction pathways not accessible from lower-lying valence states. Here, single-shot UV/VUV pump-probe spectroscopy was used to study the photodissociation dynamics of iodomethane after 268 nm excitation in the A-band and excitation of the 6p ( E) Rydberg state at 161 nm. By combining weak-field VUV single-photon ionization with sub-10 fs temporal resolution and the superior statistical accuracy of the single-shot technique, sub-30 fs wave packet dynamics upon excitation in the A-band by a UV pump pulse were disclosed. Population transfer from the Rydberg state to the 2 A valence state leading to 100 fs dissociation dynamics was observed by utilizing the same methodology in a VUV-pump/UV-probe scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.