Diazocines
are bridged azobenzenes with superior photophysical
properties. In contrast to azobenzenes the Z configuration
is thermodynamically stable and the E isomer is metastable.
We present a new class of nitrogen bridged diazocines with bathochromically
shifted switching wavelengths and remarkably high quantum yields (−NH–CH2− bridged diazocine: ΦZ→E =
0.57, ΦE→Z = 0.8). Z to E isomerization is induced by irradiation with blue light,
whereas switching back to the Z isomer is accomplished
with light in the near-infrared window (up to 740 nm), which is important
for medical applications like photopharmacology (deep tissue penetration).
Furthermore, substitution at the bridging nitrogen should provide
access to widely applicable tricyclic, photoswitchable pharmacophores.
The −NAc–CH2− bridged derivative is
soluble in water, and all photophysical properties (conversion rates,
quantum yields, and thermal half-lives) are largely retained. Hence,
this diazocine is an ideal photoswitch for applications in biochemical
systems and in photopharmacology.
We describe a new method for pulsed spin order transfer of parahydrogen-induced polarization (PHIP) that enables high polarization in incompletely 2H-labeled molecules by exciting only the desired protons in a frequency-selective manner.
The hyperpolarization of nuclear spins has enabled unique applications in chemistry, biophysics, and particularly metabolic imaging. Parahydrogen-induced polarization (PHIP) offers a fast and cost-efficient way of hyperpolarization. Nevertheless, PHIP lags behind dynamic nuclear polarization (DNP), which is already being evaluated in clinical studies. This shortcoming is mainly due to problems in the synthesis of the corresponding PHIP precursor molecules. The most widely used DNP tracer in clinical studies, particularly for the detection of prostate cancer, is 1-13 C-pyruvate. The ideal derivative for PHIP is the deuterated vinyl ester because the spin physics allows for 100 % polarization. Unfortunately, there is no efficient synthesis for vinyl esters of β-ketocarboxylic acids in general and pyruvate in particular. Here, we present an efficient new method for the preparation of vinyl esters, including 13 C labeled, fully deuterated vinyl pyruvate using a palladium-catalyzed procedure. Using 50 % enriched parahydrogen and mild reaction conditions, a 13 C polarization of 12 % was readily achieved; 36 % are expected with 100 % pH 2 . Higher polarization values can be potentially achieved with optimized reaction conditions.
Nuclear magnetic resonance has experienced great advances in developing and translating hyperpolarization methods into procedures for fundamental and clinical studies. Here, we propose the use of a wide-bore NMR for large-scale (volume- and concentration-wise) production of hyperpolarized media using parahydrogen-induced polarization. We discuss the benefits of radio frequency-induced parahydrogen spin order transfer, we show that 100% polarization is theoretically expected for homogeneous B0 and B1 magnetic fields for a three-spin system. Moreover, we estimated that the efficiency of spin order transfer is not significantly reduced when the B1 inhomogeneity is below ± 5%; recommendations for the sample size and RF coils are also given. With the latest breakthrough in the high-yield synthesis of 1-13C-vinyl pyruvate and its deuterated isotopologues, the high-field PHIP-SAH will gain increased attention. Some remaining challenges will be addressed shortly.
Parahydrogen (pH2) induced polarization (PHIP) is a unique method that is used in analytical chemistry to elucidate catalytic hydrogenation pathways and to increase the signal of small metabolites in MRI and NMR. PHIP is based on adding or exchanging at least one pH2 molecule with a target molecule. Thus, the spin order available for hyperpolarization is often limited to that of one pH2 molecule. To break this limit, we investigated the addition of multiple pH2 molecules to one precursor. We studied the feasibility of the simultaneous hydrogenation of three arms of trivinyl orthoacetate (TVOA) intending to obtain hyperpolarized acetate. It was found that semihydrogenated TVOA underwent a fast decomposition accompanied by several minor reactions including an exchange of geminal methylene protons of a vinyl ester with pH2. The study shows that multiple vinyl ester groups are not suitable for a fast and clean (without any side products) hydrogenation and hyperpolarization that is desired in biochemical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.