Hippocampal synaptic plasticity in the form of long-term potentiation (LTP) and long-term depression (LTD) is likely to enable synaptic information storage in support of memory formation. The mouse brain has been subjected to intensive scrutiny in this regard; however, a multitude of studies has examined synaptic plasticity in the hippocampal slice preparation, whereas very few have addressed synaptic plasticity in the freely behaving mouse. Almost nothing is known about the frequency or N-methyl-D-aspartate receptor (NMDAR) dependency of hippocampal synaptic plasticity in the intact mouse brain. Therefore, in this study, we investigated the forms of synaptic plasticity that are elicited at different afferent stimulation frequencies. We also addressed the NMDAR dependency of this phenomenon. Adult male C57BL/6 mice were chronically implanted with a stimulating electrode into the Schaffer collaterals and a recording electrode into the Stratum radiatum of the CA1 region. To examine synaptic plasticity, we chose protocols that were previously shown to produce either LTP or LTD in the hippocampal slice preparation. Low-frequency stimulation (LFS) at 1 Hz (900 pulses) had no effect on evoked responses. LFS at 3 Hz (ranging from 200 up to 2 × 900 pulses) elicited short-term depression (STD, <45 min). LFS at 3 Hz (1,200 pulses) elicited slow-onset potentiation, high-frequency stimulation (HFS) at 100 Hz (100 or 200 pulses) or at 50 Hz was ineffective, whereas 100 Hz (50 pulses) elicited short-term potentiation (STP). HFS at 100 Hz given as 2 × 30, 2 × 50, or 4 × 50 pulses elicited LTP (>24 h). Theta-burst stimulation was ineffective. Antagonism of the NMDAR prevented STD, STP, and LTP. This study shows for the first time that protocols that effectively elicit persistent synaptic plasticity in the slice preparation elicit distinctly different effects in the intact mouse brain. Persistent LTD could not be elicited with any of the protocols tested. Plasticity responses are NMDAR dependent, suggesting that these phenomena are relevant for hippocampus-dependent learning.
Tropomyosin-related kinase (Trk) receptors modulate neuronal structure and function both during development and in the mature nervous system. Interestingly, TrkB and TrkC are expressed as full-length and as truncated splice variants. The cellular function of the kinase-lacking isoforms remains so far unclear. We investigated the role of the truncated receptor TrkB.T1 in the hippocampus of transgenic mice overexpressing this splice variant by analyzing both neuronal structure and function. We observed an impairment in activity-dependent synaptic plasticity as indicated by deficits in long-term potentiation and long-term depression in acute hippocampal slices of transgenic TrkB.T1 mice. In addition, dendritic complexity and spine density were significantly altered in TrkB.T1-overexpressing CA1 neurons. We found that the effect of TrkB.T1 overexpression differs between subgroups of CA1 neurons. Remarkably, overexpression of p75(NTR) and its activation by chemical induction of long-term depression in slice cultures rescued the TrkB.T1-dependent morphological alterations specifically in one of the two subgroups observed. These findings suggest that the TrkB.T1 and p75(NTR) receptor signaling systems might be cross-linked. Our findings demonstrate that TrkB.T1 regulates the function and the structure of mature pyramidal neurons. In addition, we showed that the ratio of expression levels of p75(NTR) and TrkB.T1 plays an important role in modulating dendritic architecture and synaptic plasticity in the adult rodent hippocampus, and, indeed, that the endogenous expression patterns of both receptors change reciprocally over time. We therefore propose a new function of TrkB.T1 as being dominant-negative to p75(NTR).
The glutamatergic N-methyl-D-aspartate receptor (NMDAR) is critically involved in many forms of hippocampus-dependent memory that may be enabled by synaptic plasticity. Behavioral studies with NMDAR antagonists and NMDAR subunit (GluN2) mutants revealed distinct contributions from GluN2A- and GluN2B-containing NMDARs to rapidly and slowly acquired memory performance. Furthermore, studies of synaptic plasticity, in genetically modified mice in vitro, suggest that GluN2A and GluN2B may contribute in different ways to the induction and longevity of synaptic plasticity. In contrast to the hippocampal slice preparation, in behaving mice, the afferent frequencies that induce synaptic plasticity are very restricted and specific. In fact, it is the stimulus pattern and not variations in afferent frequency that determine the longevity of long-term potentiation (LTP) in vivo. Here, we explored the contribution of GluN2A and GluN2B to LTP of differing magnitudes and persistence in freely behaving mice. We applied differing high-frequency stimulation (HFS) patterns at 100 Hz to the hippocampal CA1 region, to induce NMDAR-dependent LTP in wild-type (WT) mice, that endured for <1 h (early (E)-LTP), (LTP, 2–4 h) or >24 h (late (L)-LTP). In GluN2A-knockout (KO) mice, E-LTP (HFS, 50 pulses) was significantly reduced in magnitude and duration, whereas LTP (HFS, 2 × 50 pulses) and L-LTP (HFS, 4 × 50 pulses) were unaffected compared to responses in WT animals. By contrast, pharmacological antagonism of GluN2B in WT had no effect on E-LTP but significantly prevented LTP. E-LTP and LTP were significantly impaired by GluN2B antagonism in GluN2A-KO mice. These data indicate that the pattern of afferent stimulation is decisive for the recruitment of distinct GluN2A and GluN2B signaling pathways that in turn determine the persistency of hippocampal LTP. Whereas brief bursts of patterned stimulation preferentially recruit GluN2A and lead to weak and short-lived forms of LTP, prolonged, more intense, afferent activation recruits GluN2B and leads to robust and persistent LTP. These unique signal-response properties of GluN2A and GluN2B enable qualitative differentiation of information encoding in hippocampal synapses.
Long-term environmental enrichment (EE) elicits enduring effects on the adult brain, including altered synaptic plasticity. Synaptic plasticity may underlie memory formation and includes robust (>24 h) and weak (<2 h) forms of long-term potentiation (LTP) and long-term depression (LTD). Most studies of the effect of EE on synaptic efficacy have examined the consequences of very prolonged EE-exposure. It is unclear whether brief exposure to EE can alter synaptic plasticity. Clarifying this issue could help develop strategies to address cognitive deficits arising from neglect in children or adults. We assessed whether short-term EE elicits alterations in hippocampal synaptic plasticity and if social context may play a role. Adult mice were exposed to EE for 14 consecutive days. We found that robust late-LTP (>24 h) and short-term depression (<2 h) at Schaffer-collateral-CA1 synapses in freely behaving mice were unaltered, whereas early-LTP (E-LTP, <2 h) was significantly enhanced by EE. Effects were transient: E-LTP returned to control levels 1 week after cessation of EE. Six weeks later, animals were re-exposed to EE for 14 days. Under these conditions, E-LTP was facilitated into L-LTP (>24 h), suggesting that metaplasticity was induced during the first EE experience and that EE-mediated modifications are cumulative. Effects were absent in mice that underwent solitary enrichment or were group-housed without EE. These data suggest that EE in naïve animals strengthens E-LTP, and also promotes L-LTP in animals that underwent EE in the past. This indicates that brief exposure to EE, particularly under social conditions can elicit lasting positive effects on synaptic strength that may have beneficial consequences for cognition that depends on synaptic plasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.