The combined Greenland‐Senja Fracture Zones (GSFZ) represent a first‐order plate tectonic feature in the North Atlantic Ocean. The GSFZ defines an abrupt change in the character of magnetic anomalies with well‐defined seafloor spreading anomalies in the Greenland and Norwegian basins to the south but ambiguous and weak magnetic anomalies in the Boreas Basin to the north. Substantial uncertainty exists concerning the plate tectonic evolution of the latter area, including the role of the East Greenland Ridge, which is situated along the Greenland Fracture Zone. In 2002, a combined ocean‐bottom seismometer and multichannel seismic (MCS) survey acquired two intersecting wide‐angle reflection and coincident MCS profiles across and along the East Greenland Ridge. We present the results of integrated reflection seismic interpretation, first‐arrival tomography, 2D kinematic raytracing, full‐wave amplitude modeling, and gravity modeling of the intersecting profiles. The results show that (1) the Greenland Basin is characterized by a normal oceanic crustal velocity structure, (2) the velocity structure of the East Greenland Ridge is of overall continental type, and (3) a major faulted basin province above highly extended continental crust exists to the NE of the ridge. The results further suggest that a zone of extremely thin and faulted continental crust above partially serpentinized mantle peridotite defines the NW edge of the East Greenland Ridge and the transition to the NE Greenland margin.
[1] The tectonic history of the Arctic Ocean remains poorly resolved and highly controversial. Details regarding break up of the Lomonosov Ridge from the Barents-Kara shelf margins and the establishment of seafloor spreading in the Cenozoic Eurasia Basin are unresolved. Significantly, the plate tectonic evolution of the Mesozoic Amerasia Basin is essentially unknown. The Arctic Ocean north of Greenland is at a critical juncture that formed at the locus of a Mesozoic three-plate setting between the Lomonosov Ridge, Greenland, and North America. In addition, the area is close to the European plate, resulting in complicated interactions between all these areas that are difficult to resolve. In 2009, the 550,000 km 2 LOMGRAV aero-geophysical survey produced the first collocated gravity and magnetic measurements over the area, significantly increasing the data coverage. We present an interpretation of a new free-air gravity compilation, which reveals a regionally consistent structural grain across the Lomonosov Ridge, the Ellesmere and Lincoln Sea shelves, and the Alpha Ridge. We interpret the grain as evidence of latest Cretaceous ($80 Ma) regional extension in response to the northward propagation of Atlantic and Labrador Sea opening into the Arctic, west of Greenland. This interpretation is consistent with coincident alkaline volcanic activity evident in the borderlands of the Lincoln Sea. We further suggest that Eurekan crustal shortening contributed to the formation of the distinct Lomonosov Ridge plateau against an important fault zone north of Greenland. Our results provide new constraints for Cretaceous-Cenozoic plate reconstructions of the Arctic.
Tectonic models predict that following breakup, rift margins undergo only decaying thermal subsidence during their postrift evolution. However, postbreakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses to inner margin episodic uplift, including the formation of coastal mountains. The origin of these events remains enigmatic. We present a seismic reflection study from the Greenland Fracture Zone-East Greenland Ridge (GFZ-EGR) and the NE Greenland shelf. We document a regional intra-Miocene seismic unconformity (IMU), which marks the termination of synrift deposition in the deep-sea basins and onset of (i) thermomechanical coupling across the GFZ, (ii) basin compression, and (iii) contourite deposition, north of the EGR. The onset of coupling across the GFZ is constrained by results of 2-D flexural backstripping. We explain the thermomechanical coupling and the deposition of contourites by the formation of a continuous plate boundary along the Mohns and Knipovich ridges, leading to an accelerated widening of the Fram Strait. We demonstrate that the IMU event is linked to onset of uplift and massive shelf progradation on the NE Greenland margin. Given an estimated middle to late Miocene (~15-10 Ma) age of the IMU, we speculate that the event is synchronous with uplift of the east and west Greenland margins. The correlation between margin uplift and plate motion changes further indicates that the uplift was triggered by plate tectonic forces, induced perhaps by a change in the Iceland plume (a hot pulse) and/or by changes in intraplate stresses related to global tectonics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.