In future power systems with little system inertia, grid operators will require the provision of synthetic inertia (SI) from renewable energy sources. Unlike today, grid operators may require continuous provision of SI. This can lead to an unwanted disconnection of wind turbine generators (WTGs) from the grid, and has the potential to cause a significant decrease of the energy yield and financial losses for the turbine operator. In order to avoid such situations a controller is proposed, which interprets the grid codes to the benefit of all parties involved. This can be achieved by a variable inertia constant, which changes with the operating point of the WTG. In this study, the behaviour of the variable inertia constant controller is described, assessed and verified with time domain simulations.
In alternating current (AC) power systems the power generated by power plants has to match the power drawn by consumers plus the system losses at any time. In the case of an imbalance between generation and consumption the frequency in the system deviates from its rated value. In order to avoid an unsuitable frequency, control power plants have to step in to level out this imbalance. Control power plants need time to adjust their power, which is why the inertial behaviour of today's AC systems is crucial for frequency control. In this paper it is discussed that the inertia in the European Continental Synchronous Area decreases due to the transition to renewable energy sources. This will become a problem for frequency control, which is why the provision of non-inherent inertia is proposed. This system consists of fast-responding energy storage. Its dimensions in terms of power and energy are determined. Since such non-inherent inertia requires investments a cost-efficient solution has to be found. Different technologies are compared in terms of the newly-introduced levelised cost of inertia. This paper concludes with the proposal that in future inertia should be traded and with the recommendation to use flywheels for this purpose, as these are the most cost-efficient solution for this task.
This paper presents a study to assess how wind turbines could increase their energy yield when their grid connection point is not strong enough for the rated power. It is state of the art that in such situations grid operators impose feed-in management on the affected wind turbines, i.e., the maximum power is limited. For this study a 5 MW wind turbine is introduced in a small grid that has only limited power transfer capabilities to the upstream power system. Simulations of one particular day are conducted with the electric load, the temperature, and the wind speed as measured on that day. This simulation is conducted twice: once with the 5 MW wind turbine controlled with conventional feed-in management, and a second time when its power is controlled flexibly, i.e., with continuous feed-in management. The results of these two simulations are compared in terms of grid performance, and in terms of mechanical stress on the 5 MW wind turbine. Finally, the conclusion can be drawn that continuous feed-in management is clearly superior to conventional feed-in management. It exhibits much better performance in the grid in terms of energy yield and also in terms of constancy of voltage and temperature of grid equipment. Although it causes somewhat more frequent stress for the wind turbine, the maximum stress level is not increased.
The work presented in this paper aims to show how modern wind turbines can help to control the frequency in a small grid which suffers from large power imbalances. It is shown for an exemplary situation, which occurred in Flensburg’s distribution grid in 2019: a major blackout, which occurred after almost two hours in islanding operation, affecting almost the entire distribution grid, which supplies approximately 55,000 households and businesses. For the analysis, a wind turbine model and a grid support controller developed at the Wind Energy Technology Institute are combined with real measurements from the day of the blackout to generate a fictional yet realistic case study for such an islanding situation. For this case study, it is assumed that wind turbines with grid support functionalities are connected to the medium voltage distribution grid of the city. It is shown to what extent wind turbines can help to operate the grid by providing grid frequency support in two ways: By supplying synthetic inertia only, where the wind turbines can help to limit the rate of change of frequency in the islanded grid directly after losing the connection to the central European grid. In combination with the primary frequency control capabilities of the wind turbines (WTs), the disconnection of one gen set in the local power station might have been avoided. Furthermore, wind turbines with primary frequency control capabilities could have restored the grid frequency to 50 Hz shortly after the islanding situation even if the aforementioned gen-set was lost. This would have allowed connecting a backup medium voltage line to the central European grid and thereby avoiding the blackout.
This paper presents findings of a study on continuous feed-in management and continuous synthetic inertia contribution with wind turbines. A realistic case study, based on real measurements, is outlined. A wind turbine feeds into a weak feeder, such that its power has to be adapted to the permissible loading of this feeder. At the same time the wind turbine is to provide inertia to the grid by applying the previously published variable inertia constant controller. It is discussed that optimal grid utilization and simultaneous inertia contribution are mandatory for the frequency control in power systems that are heavily penetrated with renewable energies. The study shows that continuous feed-in management can be combined well with continuous inertia provision. There are hardly any negative consequences for the wind turbine. The benefits for the grid are convincing, both in terms of increased system utilization and in terms of provided inertia. It is concluded that wind turbines can enhance angular stability in a power system to a larger extent than conventional power plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.