The detection of silica-rich dust particles, as an indication for ongoing hydrothermal activity, and the presence of water and organic molecules in the plume of Enceladus, have made Saturn’s icy moon a hot spot in the search for potential extraterrestrial life. Methanogenic archaea are among the organisms that could potentially thrive under the predicted conditions on Enceladus, considering that both molecular hydrogen (H2) and methane (CH4) have been detected in the plume. Here we show that a methanogenic archaeon, Methanothermococcus okinawensis, can produce CH4 under physicochemical conditions extrapolated for Enceladus. Up to 72% carbon dioxide to CH4 conversion is reached at 50 bar in the presence of potential inhibitors. Furthermore, kinetic and thermodynamic computations of low-temperature serpentinization indicate that there may be sufficient H2 gas production to serve as a substrate for CH4 production on Enceladus. We conclude that some of the CH4 detected in the plume of Enceladus might, in principle, be produced by methanogens.
The production and storage of energy from renewable resources steadily increases in importance. One opportunity is to utilize carbon dioxide (CO2)-type hydrogenotrophic methanogens, which are an intriguing group of microorganisms from the domain Archaea, for conversion of hydrogen and CO2 to methane (CH4). This review summarizes the current state of the art of bioprocess development for biological CH4 production (BMP) from pure cultures with pure gasses. The prerequisites for successful quantification of BMP by using closed batch, as well as fed-batch and chemostat culture cultivation, are presented. This review shows that BMP is currently a much underexplored field of bioprocess development, which mainly focuses on the application of continuously stirred tank reactors. However, some promising alternatives, such as membrane reactors have already been adapted for BMP. Moreover, industrial-based scale-up of BMP to pilot scale and larger has not been conducted. Most crucial parameters have been found to be those, which influence gas-limitation fundamentals, or parameters that contribute to the complex effects that arise during medium development for scale-up of BMP bioprocesses, highly stressing the importance of holistic BMP quantification by the application of well-defined physiological parameters. The much underexplored number of different genera, which is mainly limited to Methanothermobacter spp., offers the possibility of additional scientific and bioprocess development endeavors for the investigation of BMP. This indicates the large potential for future bioprocess development considering the possible application of bioprocessing technological aspects for renewable energy storage and power generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.