The proportion of metals in soils in equilibrium with soil solution can be determined using isotopic dilution. For this purpose, an isotope dilution mass spectrometric (IDMS) technique has been applied for the elements Cd, Cr, Cu, Mo, Ni, Pb, Tl and Zn. Conventionally, sorbed amounts of heavy metals in soils are analysed by ethylenediamine tetra-acetic acid (EDTA) extraction. The IDMS technique and EDTA extraction were both applied to 115 soil samples and compared. For Cd, Cu, Ni, Pb and Zn, the results of the IDMS technique correlated well with the results of EDTA extractions (r s (Cd962; all at P < 0.001). For Cd and Zn, no significant differences between the results of both methods could be observed, which suggests that EDTA and IDMS determined the same pool. EDTA extracted more Cu, Ni and Pb than was determined by IDMS (7, 26 and 13%, respectively). The correlation between EDTA extraction and IDMS for Cr was significant but weak (r s (Cr) ¼ 0.361). For Tl and Mo, EDTA extraction and IDMS did not correlate, and IDMS yielded larger concentrations than EDTA. This can be explained by the fact that Tl and Mo do not form stable EDTA complexes, which are essential for the EDTA technique. Recovery experiments demonstrated that added Cd, Cu, Mo, Ni, Pb, Tl and Zn could be recovered successfully by IDMS analysis (mean recovery ¼ 103 AE 9%). Adsorption isotherms for soil samples were determined for Tl, thereby demonstrating that IDMS gave a better estimation of the native content of sorbed Tl in soils than EDTA extraction.
This study gives an overview of soil organic carbon (SOC) stocks in Germany's agricultural soils, and quantifies and explains the influence of explanatory variables such as land use and management, soil type and climate. Over 2500 agricultural sites were sampled and their SOC stocks determined, together with other soil properties. Machine‐learning algorithms were used to identify the most important variables. Land use, land‐use history, clay content and electrical conductivity were the main predictors in the topsoil, whereas bedrock material, relief and electrical conductivity governed the variation in subsoil carbon stocks. We found that 32% of all soil profiles were anthropogenically transformed. The influence of climate variables was surprisingly small, whereas site variables, in particular in the subsoil, explained a large proportion of the variation in soil carbon. The understanding of SOC dynamics at the regional scale requires a thorough description of the spatial variation in soil properties. The effect of agronomic management on SOC stocks was important near the soil surface, but was mainly attributable to land use (grassland or arable and not to other management factors. Highlights Factors affecting spatial variation of soil organic carbon stocks are largely unknown. More than 200 possible predictors for this variation were assessed for over 2500 sites. Land use (history), texture, electrical conductivity, bedrock and relief were main controlling factors of carbon stock variation. Aggregation and carbon storage capacity of soil determine much of the spatial variation in carbon stocks.
Background: There is considerable uncertainty about the actual size of the global soil organic carbon (SOC) pool and its spatial distribution due to insufficient and heterogeneous data coverage.Aims: We aimed to assess the size of the German agricultural SOC stock and develop a stratification approach that could be used in national greenhouse gas reporting.Methods: Soils from a total of 3104 sites, comprising 2234 croplands, 820 permanent grasslands and 50 sites with permanent crops (vineyards, orchards) were sampled in a grid of 8 × 8 km to a depth of 100 cm in fixed depth increments. In addition, a decade of management data was recorded in a questionnaire completed by farmers. Two different approaches were used to stratify cropland and grassland mineral soils and derive homogeneous groups: stratification via soil type (pedogenesis) and via SOC‐relevant soil properties.Results: A total of 146 soils were identified as organic soils, which stored by far the highest average SOC stock of 528 ± 201 Mg ha−1 in 0–100 cm depth. Of the mineral soils, croplands and permanent crops stored on average 61 ± 25 and 62 ± 25 Mg ha−1 in 0–30 cm (topsoil) and 35 ± 30 and 44 ± 28 Mg ha−1 in 30–100 cm (subsoil), while permanent grasslands stored significantly more SOC (88 ± 32 and 47 ± 50 Mg ha−1 in topsoil and subsoil). Overall, topsoils stored 67 ± 14% and subsoils 33 ± 14% of total SOC stocks. Soil C:N ratio, clay content and groundwater level were major factors that explained the spatial variability of SOC stocks in mineral soils. Accordingly, Podzols, Gleysols and Vertisols were found to have the highest SOC stocks.Conclusions: Stratification via soil properties yielded the most comparable cropland and grassland strata and is thus preferable for estimating land‐use change effects, e.g., for greenhouse gas inventories.In total, 2.5 Pg C are stored in the upper 100 cm of German agricultural soils, making them the largest organic carbon pool in terrestrial ecosystems of Germany. This bares a large responsibility for the agricultural sector and society as a whole to maintain and, if possible, enhance this pool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.