Histamine regulates neurotransmitter release in the central and peripheral nervous systems through H3 presynaptic receptors. The existence of the histamine H3 receptor was demonstrated pharmacologically 15 years ago, yet despite intensive efforts, its molecular identity has remained elusive. As part of a directed effort to discover novel G protein-coupled receptors through homology searching of expressed sequence tag databases, we identified a partial clone (GPCR97) that had significant homology to biogenic amine receptors. The GPCR97 clone was used to probe a human thalamus library, which resulted in the isolation of a full-length clone encoding a putative G protein-coupled receptor. Homology analysis showed the highest similarity to M2 muscarinic acetylcholine receptors and overall low homology to all other biogenic amine receptors. Transfection of GPCR97 into a variety of cell lines conferred an ability to inhibit forskolin-stimulated cAMP formation in response to histamine, but not to acetylcholine or any other biogenic amine. Subsequent analysis revealed a pharmacological profile practically indistinguishable from that for the histamine H3 receptor. In situ hybridization in rat brain revealed high levels of mRNA in all neuronal systems (such as the cerebral cortex, the thalamus, and the caudate nucleus) previously associated with H3 receptor function. Its widespread and abundant neuronal expression in the brain highlights the significance of histamine as a general neurotransmitter modulator. The availability of the human H3 receptor cDNA should greatly aid in the development of chemical and biological reagents, allowing a greater appreciation of the role of histamine in brain function.
Differential gene expression occurs in the process of development, maintenance, injury, and death of unicellular as well as complex organisms. Differentially expressed genes are usually identified by comparing steady-state mRNA concentrations. Electronic subtraction (ES), subtractive hybridization (SH), and differential display (DD) are methods commonly used for this purpose. A rigorous examination has been lacking and therefore quantitative aspects of these methods remain speculative. We compare these methods by identifying a total of 58 unique differentially expressed mRNAs within the same experimental system (HeLa cells treated with interferon-gamma). ES yields digital, reusable data that quantitated steady-state mRNA concentrations but only identified abundant mRNAs (seven were identified), which represent a small fraction of the total number of differentially expressed mRNAs. SH and DD identified abundant and rare mRNAs (33 and 23 unique mRNAs respectively) with redundancy. The redundancy is mRNA abundance-dependent for SH and primer-dependent for DD. We conclude that DD is the method of choice because it identifies mRNAs independent of prevalence, uses small amounts of RNA, identifies increases and decreases of mRNA steady-state levels simultaneously, and has rapid output.
Positive selection of thymocytes is a complex and crucial event in T cell development that is characterized by cell death rescue, commitment toward the helper or cytotoxic lineage, and functional maturation of thymocytes bearing an appropriate TCR. To search for novel genes involved in this process, we compared gene expression patterns in positively selected thymocytes and their immediate progenitors in mice using the differential display technique. This approach lead to the identification of a novel gene, mIAN-1 (murine immune-associated nucleotide-1), that is switched on upon positive selection and predominantly expressed in the lymphoid system. We show that mIAN-1 encodes a 42-kDa protein sharing sequence homology with the pathogen-induced plant protein aig1 and that it defines a novel family of at least three putative GTP-binding proteins. Analysis of protein expression at various stages of thymocyte development links mIAN-1 to CD3-mediated selection events, suggesting that it represents a key player of thymocyte development and that it participates to peripheral specific immune responses. The evolutionary conservation of the IAN family provides a unique example of a plant pathogen response gene conserved in animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.