The existing shortage of therapists and caregivers assisting physically disabled individuals at home is expected to increase and become serious problem in the near future. The patient population needing physical rehabilitation of the upper extremity is also constantly increasing. Robotic devices have the potential to address this problem as noted by the results of recent research studies. However, the availability of these devices in clinical settings is limited, leaving plenty of room for improvement. The purpose of this paper is to document a review of robotic devices for upper limb rehabilitation including those in developing phase in order to provide a comprehensive reference about existing solutions and facilitate the development of new and improved devices. In particular the following issues are discussed: application field, target group, type of assistance, mechanical design, control strategy and clinical evaluation. This paper also includes a comprehensive, tabulated comparison of technical solutions implemented in various systems.
The fixation of stable trochanteric femur fractures with RoSA in cadavers led to greater primary stability under cyclic load, with significant advantages with regard to stiffness, failure load, and rotational stability, compared with the SHS. A detrimental effect was its migration tendency, which began at 1800 N and occurred in the cranial direction. A meticulous insertion technique was a prerequisite to avoid iatrogenic perforation of the femoral head. Our results will have to be substantiated by further biomechanical and clinical trials using an optimized RoSA system.
Medical engineering is always closely linked to the well-being of the human. This close relation can strike out at two directions: although medical devices are intentionally designed to support diagnosis and therapy, they can also cause serious adverse events and harm patients, users and third parties. Therefore, according to ISO 14971, risk management -including risk identification, risk evaluation, risk control and market surveillance -is an important and inevitable chapter in medical device development. Unfortunately, the risk control process, which implies selection and application of countermeasures (generally through inherent, protective or descriptive safety measures), is not yet supported systematically and methodically. Therefore the Chair of Medical Engineering at the RWTH Aachen University has developed a methodological approach to generate appropriate countermeasures for given risks, helping to mitigate previously identified technical and human-induced errors or hazards in products and processes.The methodology uses a knowledge-base, reorganizing prior experience, from by now fourteen risk analyses of medical systems, comprising research and industrial risk assessments. Case-tailored categories from error-taxonomies allow the user to hark back to his antecessors' knowledge in a user-friendly manner. The methods' basic structure is built on the Theory of Inventive Problem Solving (TRIZ) and can be fed with further data in the future. Purely technical and system-inherent, as well as Human-Machine-Interaction errors, have been organized in thirteen error categories, filing 61 individual failure modes, which represent the former (root) causes and failures from the analyzed risk analysis data base. The different possible combinations of cause and failure are displayed in a 2-D matrix, indexing a total of 41 abstract principles of risk control that suggest tailor-made solutions for a specific problem.Evaluation of the method took place with different test groups, each time in comparison to conventional brainstorming as the state-of-the-art reference. Reassessment of risk priority numbers (after applying countermeasures) by a blind expert, shows a noticeable benefit, gained by the new method. Keywords: healthcare/medical systems, risk control in risk management, system safety, theory of inventive problem solving (TRIZ), human factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.