This paper gives a detailed overview of the current state of research in relation to the use of state space models and the KALMAN-filter in the field of stochastic claims reserving. Most of these state space representations are matrix-based, which complicates their applications. Therefore, to facilitate the implementation of state space models in practice, we present a scalar state space model for cumulative payments, which is an extension of the well-known chain ladder (CL) method. The presented model is distribution-free, forms a basis for determining the entire unobservable lower and upper run-off triangles and can easily be applied in practice using the KALMAN-filter for prediction, filtering and smoothing of cumulative payments. In addition, the model provides an easy way to find outliers in the data and to determine outlier effects. Finally, an empirical comparison of the scalar state space model, promising prior state space models and some popular stochastic claims reserving methods is performed.
The sign test is one of the most popular nonparametric tests for location problems and allows testing for any quantile of a population. However, the common sign test has serious drawbacks such as loss of information by considering solely signs of observations but not their magnitudes, various problems related to handling of ties in the data, and the lack of embedding uncertainty regarding the fraction of underlying quantile. To address these issues, we present an extended sign test based on fuzzy categories and fuzzy formulated hypotheses that improves the generality, versatility, and practicability of the common sign test. This generalized test procedure is neat in theory and practice and avoids disadvantages that are often associated with fuzzy tests (e.g., a considerably higher complexity of the underlying model, a fuzzy test decision, and a possibilistic instead of a probabilistic interpretation of test results). In addition, we perform a comprehensive case study on COVID‐19 in HIV‐infected individuals with a focus on human body temperature and related measurement problems. The results of the study clearly indicate that fuzzy categories and fuzzy hypotheses improve the performance of the sign test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.