Adjustments in mitochondrial properties and capacities are crucial in acclimatization to seasonal cold and in evolutionary cold adaptation of marine ectotherms. Although long-term compensatory increments in aerobic capacity of fish tissues have frequently been described in response to cold, much less is known about transitional phases and gene expression patterns involved. We investigated the time course of adjustment to acute cold in liver of eurythermal eelpout Zoarces viviparus. Whereas citrate synthase (CS) activity rose progressively in liver, cytochrome c oxidase (COX) activity was not altered during cold acclimation. Species-specific RNA probes were used to determine mRNA levels. CS mRNA (nuclear encoded) displayed a delayed, transient increase in response to cold, such that transcript levels did not parallel the change in enzyme activity. The enzyme activities and mRNA levels in the confamilial Antarctic Pachycara brachycephalum indicate cold compensation of CS activity in this cold-adapted species. The ratio of CS and COX activities was elevated in acclimation and adaptation to cold, indicating enhanced citrate synthesis over respiratory chain capacities in cold-adapted liver mitochondria. This may support enhanced lipid synthesis typically found in cold. The ratio of enzyme activity and transcript levels differed largely between Z. viviparus populations from the Baltic and North Seas, indicating the influence of unidentified parameters other than temperature. Transcript levels may not be tightly correlated with enzyme activities during thermal adaptation and thereafter. The time course of the acclimation process indicates that regulation at the translational and posttranslational levels predominates in adjustment to moderate thermal challenges.
SUMMARYBecause of call frequency overlap and masking interference, the airborne sound channel represents a limited resource for communication in a species-rich cricket community like the tropical rainforest. Here we studied the frequency tuning of an auditory neuron mediating phonotaxis in the rainforest cricket Paroecanthus podagrosus, suffering from strong competition, in comparison with the same homologous neuron in two species of European field crickets, where such competition does not exist. As predicted, the rainforest species exhibited a more selective tuning compared with the European counterparts. The filter reduced background nocturnal noise levels by 26 dB, compared with only 16 and 10 dB in the two European species. We also quantified the performance of the sensory filter under the different filter regimes by examining the representation of the species-specific amplitude modulation of the male calling song, when embedded in background noise. Again, the filter of the rainforest cricket performed significantly better in terms of representing this important signal parameter. The neuronal representation of the calling song pattern within receivers was maintained for a wide range of signal-to-noise ratios because of the more sharply tuned sensory system and selective attention mechanisms. Finally, the rainforest cricket also showed an almost perfect match between the filter for sensitivity and the peripheral filter for directional hearing, in contrast to its European counterparts. We discuss the consequences of these adaptations for intraspecific acoustic communication and reproductive isolation between species.
The efficiency of long-distance acoustic signalling of insects in their natural habitat is constrained in several ways. Acoustic signals are not only subjected to changes imposed by the physical structure of the habitat such as attenuation and degradation but also to masking interference from co-occurring signals of other acoustically communicating species. Masking interference is likely to be a ubiquitous problem in multi-species assemblages, but successful communication in natural environments under noisy conditions suggests powerful strategies to deal with the detection and recognition of relevant signals. In this review we present recent work on the role of the habitat as a driving force in shaping insect signal structures. In the context of acoustic masking interference, we discuss the ecological niche concept and examine the role of acoustic resource partitioning in the temporal, spatial and spectral domains as sender strategies to counter masking. We then examine the efficacy of different receiver strategies: physiological mechanisms such as frequency tuning, spatial release from masking and gain control as useful strategies to counteract acoustic masking. We also review recent work on the effects of anthropogenic noise on insect acoustic communication and the importance of insect sounds as indicators of biodiversity and ecosystem health.
Acoustic signals consist of pressure changes over time and can thus be analyzed in the frequency- or in the time-domain. With behavioural experiments we investigated which frequency components (FC) are necessary for the recognition of the periodic envelope of the conspecific song by females of the grasshopper Chorthippus biguttulus. Further, we determined up to which frequency component phase information is required which would indicate processing in the time domain. Responses of females revealed that signals composed of FC between 10 and 50 Hz are sufficient for recognition of the song envelope. A systematic reduction in the number of FC showed that no single frequency component was required; signals without the fundamental frequency were still highly attractive and only three FC may be sufficient for song recognition. Phase changes for frequencies up to 40 Hz strongly changed the attractiveness of song signals but only little at 50 Hz. Females were also tested with rectangular signals in which pause duration was varied. Evidently, and despite the high attractiveness of song signals with a "missing fundamental", females evaluated the attractiveness of signals in the time-domain, since the selectivity for pause duration predicted the responses to signals composed from FC well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.