Let L/K be a finite Galois extension in characteristic ≠ 2, and consider a non-split Galois theoretical embedding problem over L/K with cyclic kernel of order 2. In this paper, we prove that if the Galois group of L/K is the direct product of two subgroups, the obstruction to solving the embedding problem can be expressed as the product of the obstructions to related embedding problems over the corresponding subextensions of L/K and certain quaternion algebra factors in the Brauer group of K. In connection with this, the obstructions to realising non-abelian groups of order 8 and 16 as Galois groups over fields of characteristic ≠ 2 are calculated, and these obstructions are used to consider automatic realisations between groups of order 4, 8 and 16.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.