In production processes, many adjustment tasks have to be carried out manually. In order to automate these activities, there is a need for cost and space efficient actuators that can provide comparatively high forces. This paper presents a novel actuator concept based on the phase change material paraffin wax. Furthermore, a numerical modelling strategy is introduced enabling the prediction of actuator properties. The model considers paraffin wax as a deformable body. The temperature-dependent volume expansion data of the paraffin wax is obtained experimentally to allow for a realistic description of the thermal-mechanical properties. The simulation is verified, using experimental data from actuators with varying paraffin wax volumes. With a maximum deviation of 6%, the simulations show a good agreement with the experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.