Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles.
Scanning electron microscopy (SEM) allows the surface ultrastructure of intrahepatic cells and other tissue components of liver to be delineated. Excellent depth of focus of the SEM makes it possible to visualize surfaces of intact cells in their native configurations. This report details the surface characteristics and inter-relationships of hepatocytes and hepatic plates, sinusoidal endothelial cells and sinusoids, presumed Kupffer cells, vessels, bile ducts, connective tissue, and the capsule of rat liver. Hepatocytes present three structurally distinctive faces--the intercellular face containing flat surfaces and bile canaliculus, the sinusoidal face, and the connective tissue face which abuts portal tracts and hepatic veins. Sinusoidal endothelium is penetrated by large (1 to 3 mum) and small (0.1 mum) fenestrae, the latter occurring in clusters of up to 50. The width of bile canaliculi and distribution of large fenestrae vary proximodistally along hepatic plate or sinusoid. The cells of portal bile ductules contain microvilli located in linear rows and sparse cilia. Endothelium of hepatic artery and of portal vein is sparsely fenestrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.