Glaucoma is a major cause of blindness and is characterized by progressive degeneration of the optic nerve and is usually associated with elevated intraocular pressure. Analyses of sequence tagged site (STS) content and haplotype sharing between families affected with chromosome 1q-linked open angle glaucoma (GLC1A) were used to prioritize candidate genes for mutation screening. A gene encoding a trabecular meshwork protein (TIGR) mapped to the narrowest disease interval by STS content and radiation hybrid mapping. Thirteen glaucoma patients were found to have one of three mutations in this gene (3.9 percent of the population studied). One of these mutations was also found in a control individual (0.2 percent). Identification of these mutations will aid in early diagnosis, which is essential for optimal application of existing therapies.
Generation and turnover of phosphoinositides (PIs) must be coordinated in a spatial- and temporal-restricted manner. The small GTPase Rab5 interacts with two PI 3-kinases, Vps34 and PI3Kβ, suggesting that it regulates the production of 3-PIs at various stages of the early endocytic pathway. Here, we discovered that Rab5 also interacts directly with PI 5- and PI 4-phosphatases and stimulates their activity. Rab5 regulates the production of phosphatidylinositol 3-phosphate (PtdIns[3]P) through a dual mechanism, by directly phosphorylating phosphatidylinositol via Vps34 and by a hierarchical enzymatic cascade of phosphoinositide-3-kinaseβ (PI3Kβ), PI 5-, and PI 4-phosphatases. The functional importance of such an enzymatic pathway is demonstrated by the inhibition of transferrin uptake upon silencing of PI 4-phosphatase and studies in weeble mutant mice, where deficiency of PI 4-phosphatase causes an increase of PtdIns(3,4)P2 and a reduction in PtdIns(3)P. Activation of PI 3-kinase at the plasma membrane is accompanied by the recruitment of Rab5, PI 4-, and PI 5-phosphatases to the cell cortex. Our data provide the first evidence for a dual role of a Rab GTPase in regulating both generation and turnover of PIs via PI kinases and phosphatases to coordinate signaling functions with organelle homeostasis.
Cayman ataxia is a recessive congenital ataxia restricted to one area of Grand Cayman Island. Comparative mapping suggested that the locus on 19p13.3 associated with Cayman ataxia might be homologous to the locus on mouse chromosome 10 associated with the recessive ataxic mouse mutant jittery. Screening genes in the region of overlap identified mutations in a novel predicted gene in three mouse jittery alleles, including the first mouse mutation caused by an Alu-related (B1 element) insertion. We found two mutations exclusively in all individuals with Cayman ataxia. The gene ATCAY or Atcay encodes a neuron-restricted protein called caytaxin. Caytaxin contains a CRAL-TRIO motif common to proteins that bind small lipophilic molecules. Mutations in another protein containing a CRAL-TRIO domain, alpha-tocopherol transfer protein (TTPA), cause a vitamin E-responsive ataxia. Three-dimensional protein structural modeling predicts that the caytaxin ligand is more polar than vitamin E. Identification of the caytaxin ligand may help develop a therapy for Cayman ataxia.
The mouse mutation fidget arose spontaneously in a heterogeneous albino stock. This mutant mouse is characterized by a side-to-side head-shaking and circling behaviour, due to reduced or absent semicircular canals. Fidget mice also have small eyes, associated with cell-cycle delay and insufficient growth of the retinal neural epithelium, and lower penetrance skeletal abnormalities, including pelvic girdle dysgenesis, skull bone fusions and polydactyly. By positional cloning, we found the gene mutated in fidget mice, fidgetin (Fign), which encodes a new member of the 'meiotic' or subfamily-7 (SF7; ref. 7) group of ATPases associated with diverse cellular activities (AAA proteins). We also discovered two closely related mammalian genes. AAA proteins are molecular chaperones that facilitate a variety of functions, including membrane fusion, proteolysis, peroxisome biogenesis, endosome sorting and meiotic spindle formation, but functions for the SF7 AAA proteins are largely unknown. Fidgetin is the first mutant AAA protein found in a mammalian developmental mutant, thus defining a new role for these proteins in embryonic development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.