Biogenic sources contribute to cloud condensation nuclei (CCN) in the clean marine atmosphere, but few measurements exist to constrain climate model simulations of their importance. The chemical composition of individual atmospheric aerosol particles showed two types of sulfate-containing particles in clean marine air masses in addition to mass-based Estimated Salt particles. Both types of sulfate particles lack combustion tracers and correlate, for some conditions, to atmospheric or seawater dimethyl sulfide (DMS) concentrations, which means their source was largely biogenic. The first type is identified as New Sulfate because their large sulfate mass fraction (63% sulfate) and association with entrainment conditions means they could have formed by nucleation in the free troposphere. The second type is Added Sulfate particles (38% sulfate), because they are preexisting particles onto which additional sulfate condensed. New Sulfate particles accounted for 31% (7 cm−3) and 33% (36 cm−3) CCN at 0.1% supersaturation in late-autumn and late-spring, respectively, whereas sea spray provided 55% (13 cm−3) in late-autumn but only 4% (4 cm−3) in late-spring. Our results show a clear seasonal difference in the marine CCN budget, which illustrates how important phytoplankton-produced DMS emissions are for CCN in the North Atlantic.
We present a study of cationic and protonated clusters of neon and krypton. Recent studies using argon have shown that protonated rare gas clusters can have very different magic sizes than pure, cationic clusters. Here, we find that neon behaves similarly to argon, but that the cationic krypton is more similar to its protonated counterparts than the lighter rare gases are, sharing many of the same magic numbers. Electronic supplementary materialThe online version of this article (10.1007/s13361-019-02329-w) contains supplementary material, which is available to authorized users.
The helium-tagging technique was employed to record absorption spectra of cold anthracene cations and protonated anthracene. The evaluation of the spectra of the chromophore with a different number of attached He atoms allows getting the precise band positions of the molecular ions in the gas phase. The positions of the two most intense bands of anthracene, suitable for astrophysical detection, were found to be λ max = 3478.9 ± 1.8 Å and λ max = 7068.9 ± 5.7 Å. A considerable shift of the red band position compared to a previous measurement was attributed to a temperature effect. No coincidence of the absorption bands in astrophysical observational spectra was found. This allows estimating the upper limit for the abundance of anthracene cations per H nuclei <10−9 along the HD 183143 line of sight. We discuss possible reasons for such a low abundance of this molecular ion.
The adsorption of up to ∼100 helium atoms on cations of the planar polycyclic aromatic hydrocarbons (PAHs) anthracene, phenanthrene, fluoranthene, and pyrene was studied by combining helium nanodroplet mass spectrometry with classical and quantum computational methods. Recorded time-of-flight mass spectra reveal a unique set of structural features in the ion abundance as a function of the number of attached helium atoms for each of the investigated PAHs. Path-integral molecular dynamics simulations were used with a polarizable potential to determine the underlying adsorption patterns of helium around the studied PAH cations and in good general agreement with the experimental data. The calculated structures of the helium–PAH complexes indicate that the arrangement of adsorbed helium atoms is highly sensitive toward the structure of the solvated PAH cation. Closures of the first solvation shell around the studied PAH cations are suggested to lie between 29 and 37 adsorbed helium atoms depending on the specific PAH cation. Helium atoms are found to preferentially adsorb on these PAHs following the commensurate pattern common for graphitic surfaces, in contrast to larger carbonaceous molecules like corannulene, coronene, and fullerenes that exhibit a 1 × 1 commensurate phase.
Alkali atoms and small clusters are known to reside on the surface of a helium droplet rather than its inside as most other dopant species. A theoretical investigation suggested that alkali clusters (Li–Rb) exceeding a certain critical size can become submerged in the droplet, which was experimentally confirmed for sodium and potassium. Here, we report an analogous experimental study of rubidium cluster submersion by means of electron impact mass spectrometry. We recorded size distributions of Rb cluster ions at various electron energies between 8 and 160 eV. Our data suggest that Rb clusters attached to helium droplets undergo a gradual submersion transition similar to potassium, ultimately leading to the full submersion of clusters larger than $$\sim 100~\hbox {Rb}$$ ∼ 100 Rb atoms. Our findings are consistent with previous theoretical and experimental studies. Graphic abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.