Lake Towuti is located on central Sulawesi/Indonesia, within the Indo Pacific Warm Pool, a globally important region for atmospheric heat and moisture budgets. In 2015 the Towuti Drilling Project recovered more than 1000 m of drill core from the lake, along with downhole geophysical logging data from two drilling sites. The cores constitute the longest continuous lacustrine sediment succession from the Indo Pacific Warm Pool. We combined lithological descriptions with borehole logging data and used multivariate statistics to better understand the cyclic sequence, paleoenvironments, and geochronology of these sediments. Accurate chronologies are crucial to analyze and interpret paleoclimate records. Astronomical tuning can help build age-depth models and fill gaps between age control points. Cyclostratigraphic investigations were conducted on a downhole magnetic susceptibility log from the lacustrine facies (10–98 m below lake floor) from a continuous record of sediments in Lake Towuti. This study provides insights into the sedimentary history of the basin between radiometric ages derived from dating a tephra layer (~ 797 ka) and C14-ages (~ 45 ka) in the cores. We derived an age model that spans from late marine isotope stage (MIS) 23 to late MIS 6 (903 ± 11 to 131 ± 67 ka). Although uncertainties caused by the relatively short record and the small differences in the physical properties of sediments limited the efficacy of our approach, we suggest that eccentricity cycles and/or global glacial-interglacial climate variability were the main drivers of local variations in hydroclimate in central Indonesia. We generated the first nearly complete age-depth model for the lacustrine facies of Lake Towuti and examined the potential of geophysical downhole logging for time estimation and lithological description. Future lake drilling projects will benefit from this approach, since logging data are available just after the drilling campaign, whereas core descriptions, though more resolved, only become available months to years later.
Studies of the upper 447 m of the DEEP site sediment succession from central Lake Ohrid, Balkan Peninsula, North Macedonia and Albania provided important insights into the regional climate history and evolutionary dynamics since permanent lacustrine conditions established at 1.36 million years ago (Ma). This paper focuses on the entire 584m-long DEEP sediment succession and a comparison to a 197-m-long sediment succession from the Pestani site ~5 km to the east in the lake, where drilling ended close to the bedrock, to unravel the earliest history of Lake Ohrid and its basin development. 26 Al/ 10 Be dating of clasts from the base of the DEEP sediment succession implies that the sedimentation in the modern basin started at c. 2 Ma. Geophysical, sedimentological and micropalaeontological data allow for chronological information to be transposed from the DEEP to the Pestani succession. Fluvial conditions, slack water conditions, peat formation and/or complete desiccation prevailed at the DEEP and Pestani sites until 1.36 and 1.21 Ma, respectively, before a larger lake extended over both sites. Activation of karst aquifers to the east probably by tectonic activity and a potential existence of neighbouring Lake Prespa supported filling of Lake Ohrid. The lake deepened gradually, with a relatively constant vertical displacement rate of ~0.2 mm a À1 between the central and the eastern lateral basin and with greater water depth presumably during interglacial periods. Although the dynamic environment characterized by local processes and the fragmentary chronology of the basal sediment successions from both sites hamper palaeoclimatic significance prior to the existence of a larger lake, the new data provide an unprecedented and detailed picture of the geodynamic evolution of the basin and lake that is Europe's presumed oldest extant freshwater lake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.