Physical inactivity in response to a spinal cord injury (SCI) represents a potent stimulus for conduit artery remodelling. Changes in conduit artery characteristics may be induced by the local effects of denervation (and consequent extreme inactivity below the level of the lesion), and also by systemic adaptations due to whole body inactivity. Therefore, we assessed the time course of carotid (i.e. above lesion) and common femoral artery (i.e. below lesion) lumen diameter and wall thickness across the first 24 weeks after an SCI. Eight male subjects (mean age 35 ± 14 years) with a traumatic motor complete spinal cord lesion between T5 and L1 (i.e. paraplegia) were included. Four subjects were measured across the first 6 weeks after SCI, whilst another four subjects were measured from 8 until 24 weeks after SCI. Ultrasound was used to examine the diameter and wall thickness from the carotid and common femoral arteries. Carotid artery diameter did not change across 24 weeks, whilst femoral artery diameter stabilised after the rapid initial decrease during the first 3 weeks after the SCI. Carotid and femoral artery wall thickness showed no change during the first few weeks, but increased both between 6 and 24 weeks (P < 0.05). In conclusion, SCI leads to a rapid and localised decrease in conduit artery diameter which is isolated to the denervated and paralyzed region, whilst wall thickness gradually increases both above and below the lesion. This distinct time course of change in conduit arterial diameter and wall thickness suggests that distinct mechanisms may contribute to these adaptations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.