The biomechanical findings of this study offer scientific feedback for developing methods used to minimize the effects of valgus load on pitching-related elbow injuries.
High rotational torques during baseball pitching are believed to be linked to most overuse injuries at the shoulder. This study investigated the effects of trunk rotation on shoulder rotational torques during pitching. A total of 38 pitchers from the professional, college, high school, and youth ranks were recruited for motion analysis. Professional pitchers demonstrated the least amount of rotational torque (p= .001) among skeletally mature players, while exhibiting the ability to rotate their trunks significantly later in the pitching cycle, as compared to other groups (p= .01). It was concluded that the timing of their rotation was optimized as to allow the throwing shoulder to move with decreased joint loading by conserving the momentum generated by the trunk. These results suggest that a specific pattern in throwing can be utilized to increase the efficiency of the pitch, which would allow a player to improve performance with decreased risk of overuse injury.
CrossFit® began as another exercise program to improve physical fitness and has rapidly grown into the “sport of fitness”. However, little is understood as to the physiological indicators that determine CrossFit® sport performance. The purpose of this study was to determine which physiological performance measure was the greatest indicator of CrossFit® workout performance. Male (n = 12) and female (n = 5) participants successfully completed a treadmill graded exercise test to measure maximal oxygen uptake (VO2max), a 3-minute all-out running test (3MT) to determine critical speed (CS) and the finite capacity for running speeds above CS (D′), a Wingate anaerobic test (WAnT) to assess anaerobic peak and mean power, the CrossFit® total to measure total body strength, as well as the CrossFit® benchmark workouts: Fran, Grace, and Nancy. It was hypothesized that CS and total body strength would be the greatest indicators of CrossFit® performance. Pearson’s r correlations were used to determine the relationship of benchmark performance data and the physiological performance measures. For each benchmark-dependent variable, a stepwise linear regression was created using significant correlative data. For the workout Fran, back squat strength explained 42% of the variance. VO2max explained 68% of the variance for the workout Nancy. Lastly, anaerobic peak power explained 57% of the variance for performance on the CrossFit® total. In conclusion, results demonstrated select physiological performance variables may be used to predict CrossFit® workout performance.
Background: Pitching-related elbow injuries remain prevalent across all levels of baseball. Elbow valgus torque has been identified as a modifiable risk factor of injuries to the ulnar collateral ligament in skeletally mature pitchers. Purpose: To examine how segmental energy flow (power) influences elbow valgus torque and ball speed in professional versus high school baseball pitchers. Study Design: Descriptive laboratory study. Methods: A total of 16 professional pitchers (mean age, 21.9 ± 3.6 years) and 15 high school pitchers (mean age, 15.5 ± 1.1 years) participated in marker-based motion analysis of baseball pitching. Ball speed, maximum elbow valgus torque (MEV), temporal parameters, and mechanical power of the trunk, upper arm, and forearm were collected and compared using parametric statistical methods. Results: Professional pitchers threw with a higher ball speed (36.3 ± 2.9 m/s) compared with high school pitchers (30.4 ± 3.5 m/s) ( P = .001), and MEV was greater in professional pitchers (71.3 ± 20.0 N·m) than in high school pitchers (50.7 ± 14.6 N·m) ( P = .003). No significant difference in normalized MEV was found between groups ( P = .497). Trunk rotation time, trunk power, and upper arm power combined to predict MEV ( r = 0.823, P < .001), while trunk rotation time and trunk power were the only predictors of ball speed ( r = 0.731, P < .001). There were significant differences between the professional and high school groups in the timing of maximum pelvis rotation velocity (42.9 ± 9.7% of the pitching cycle [%PC] vs 27.9 ± 23.4 %PC, respectively; P < .025), maximum trunk rotation (33 ± 16 %PC vs 2 ± 23 %PC, respectively; P = .001), and maximum shoulder internal rotation velocity (102.4 ± 8.9 %PC vs 93.0 ± 11.7 %PC, respectively; P = .017). Conclusion: The power of trunk motion plays a critical role in the development of elbow valgus torque and ball speed. Professional and high school pitchers do not differ in elbow torque relative to their respective size but appear to adopt different patterns of segmental motion. Clinical Relevance: Because trunk rotation supplies the power associated with MEV and ball speed, training methods aimed at core stabilization and flexibility may benefit professional and high school pitchers in reducing the injury risk and improving pitching performance.
Background Abnormal biomechanical loading has been identified as an associated risk factor of osteoarthritis in the wrist and hand. Empirical data to date are insufficient to describe the role of altered biomechanics in thumb carpometacarpal (CMC) arthritis. Questions/purposes This is a pilot study to evaluate motion analysis of the upper extremity while performing functional tasks. We wished to describe the in vivo kinematics of the thumb and hand in relation to the larger joints of the upper extremity in subjects without arthritis in functional positions at rest and while loading the CMC joint. If reproducible, we then planned to compare kinematics between these subjects and a subject with advanced thumb CMC arthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.