An emulsion is the mixture of two immiscible fluids, where one fluid appears as droplets within another. In the oil and gas industry, produced crude oil generally comes with an appreciable amount of water within it in an emulsified form. Before produced crude oil can be prepared for purchase, the water associated with it must be removed. A process known as demulsification is required in order to separate an emulsion into its two phases. In the industry, a number of demulsification techniques are already present; these include thermal, mechanical, chemical, and electrical techniques.Crude oil and gas produced from wells originally come with water, salts, and volatile gases such as oxygen, carbon dioxide, and sometimes hydrogen sulfide, etc. Hence, the petroleum mixture needs to be refined-water, salt, and non-hydrocarbon gases to be separated from the mixture, in order to meet certain oil and gas specifications (which state the maximum concentrations of such contaminants) and make it ready for purchase and transportation.Sonication provides a cheap, simple, and harmless (as it involves mainly the propagation of sound waves) way of separating crude oils from water droplets via demulsification. In addition, if needed, it can be used for emulsification processes as well. Hence, a study of sonification as a way for crude refinement or chemical mixing has important implications for the oil and gas. This investigation proposes the use of ultrasonication as a new and cost-effective technique to aid in the demulsification of crude oil emulsion. The effectiveness of this technique was gauged through its comparison to the already present methods in the industry. Based on the investigation it was found that centrifuge served as the best demulsification method for it reduced the turbidity by 86%. In addition, the reduced turbidity achieved with proposed ultrasonication method ranges from 20%-60%.
Stereolithography (SLA)-based three-dimensional (3D) printing has become a popular tool for creating experimental models to study the two-phase flow behavior in complex flow structures. The main drawback while implementing such models is the wettability nature of the 3D printed surfaces. As non-geological materials are used while printing the porous designs, the flow mechanics do not follow similar patterns as in the reservoir. This work demonstrates the feasibility of using an SLA-based printing technique to replicate a porous structure. The porosity and pore size values of the 3D print are observed to be very close to that of the porous input image of the rock sample. A simple method to modify the surface characteristics of 3D printed surfaces using an ultrasonic-atomized fine spraying technique is developed. Here a thin layer of CaCO3 is deposited on the 3D printed surface by subjecting it to fine alternate sprays of calcium chloride and sodium carbonate. Thirty cycles of coating are observed to have altered the surface's wettability from neutral to oil-wet, resembling a carbonate reservoir.
Graphical abstract
Ultrasonic assisted coating of 3D-printed surfaces.
Stereolithography (SLA)-based three-dimensional (3D) printing has become a popular tool for creating experimental models to study the two-phase flow behavior in complex flow structures. The main drawback while implementing such models is the wettability nature of the 3D printed surfaces. As non-geological materials are used while printing the porous designs, the flow mechanics do not follow similar patterns as in the reservoir. This work demonstrates the feasibility of using an SLA-based printing technique to replicate a porous structure. The porosity and pore size values of the 3D print are observed to be very close to that of the porous input image of the rock sample. A simple method to modify the surface characteristics of 3D printed surfaces using an ultrasonic-atomized fine spraying technique is developed. Here a thin layer of CaCO3 is deposited on the 3D printed surface by subjecting it to fine alternate sprays of calcium chloride and sodium carbonate. Thirty cycles of coating is observed to have altered the surface's wettability from neutral to oil-wet, resembling a carbonate reservoir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.