High order methods are of great interest in the study of turbulent flows in complex geometries by means of direct simulation. With this goal in mind, the incompressible Navier-Stokes equations are discretized in space by a compact fourth order finite difference method on a staggered grid. The equations are integrated in time by a second order semi-implicit method. Stable boundary conditions are implemented and the grid is allowed to be curvilinear in two space dimensions. In every time step, a system of linear equations is solved for the velocity and the pressure by an outer and an inner iteration with preconditioning. The convergence properties of the iterative method are analyzed. The order of accuracy of the method is demonstrated in numerical experiments. The method is used to compute the flow in a channel, the driven cavity and a constricted channel.
SUMMARYThe incompressible Navier-Stokes equations are discretized in space by a hybrid method and integrated in time by the method of lines. The solution is determined on a staggered curvilinear grid in two space dimensions and by a Fourier expansion in the third dimension. The space derivatives are approximated by a compact ÿnite di erence scheme of fourth-order on the grid. The solution is advanced in time by a semi-implicit method. In each time step, systems of linear equations have to be solved for the velocity and the pressure. The iterations are split into one outer iteration and three inner iterations. The accuracy and e ciency of the method are demonstrated in a numerical experiment with rotated Poiseuille ow perturbed by Orr-Sommerfeld modes in a channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.