Invasive alien parasites and pathogens are a growing threat to biodiversity worldwide, which can contribute to the extinction of endemic species. On the Galápagos Islands, the invasive parasitic fly Philornis downsi poses a major threat to the endemic avifauna. Here, we investigated the influence of this parasite on the breeding success of two Darwin's finch species, the warbler finch (Certhidea olivacea) and the sympatric small tree finch (Camarhynchus parvulus), on Santa Cruz Island in 2010 and 2012. While the population of the small tree finch appeared to be stable, the warbler finch has experienced a dramatic decline in population size on Santa Cruz Island since 1997. We aimed to identify whether warbler finches are particularly vulnerable during different stages of the breeding cycle. Contrary to our prediction, breeding success was lower in the small tree finch than in the warbler finch. In both species P. downsi had a strong negative impact on breeding success and our data suggest that heavy rain events also lowered the fledging success. On the one hand parents might be less efficient in compensating their chicks' energy loss due to parasitism as they might be less efficient in foraging on days of heavy rain. On the other hand, intense rainfalls might lead to increased humidity and more rapid cooling of the nests. In the case of the warbler finch we found that the control of invasive plant species with herbicides had a significant additive negative impact on the breeding success. It is very likely that the availability of insects (i.e. food abundance)is lower in such controlled areas, as herbicide usage led to the removal of the entire understory. Predation seems to be a minor factor in brood loss.
The invasive parasitic fly, Philornis downsi (Muscidae), is one of the greatest threats to the avifauna of the Galapagos Islands. The larvae of this fly feed on the blood and tissues of developing nestlings of at least 18 endemic and native birds. The aim of the current study was to investigate biotic and abiotic factors that may influence the population dynamics of this invasive parasite. To study the influence of vegetation zone and related climatic factors on fly numbers, a bi-weekly monitoring program using papaya-baited traps was carried out at a dry, lowland site and at a humid, highland site on Santa Cruz Island between 2012–2014. Female flies, a large proportion of which were inseminated and gravid, were collected throughout the year at both sites, indicating females were active during and between the bird breeding seasons. This is the first evidence that female flies are able to persist even when hosts are scarce. On the other hand, catch rates of male flies declined between bird breeding seasons. Overall, catch rates of P. downsi were higher in the drier, lowland habitat, which may be a consequence of host or resource availability. Time was a stronger predictor of adult fly numbers than climate, further suggesting that P. downsi does not appear to be limited by its environment, but rather by host availability. Seasonal catch rates suggested that populations in both habitats were continuous and multivoltine. Numbers of adult female flies appeared to be regulated chiefly by simple direct density dependence, and may be governed by availability of bird nests with nestlings. Nevertheless, confounding factors such as the existence of reservoir hosts that perpetuate fly populations and changes in behavior of P. downsi may increase the vulnerability of bird hosts that are already IUCN red-listed or in decline.
Darwin’s finches are highly innovative. Recently we recorded for the first time a behavioural innovation in Darwin’s finches outside the foraging context: individuals of four species rubbed leaves of the endemic tree Psidium galapageium on their feathers. We hypothesised that this behaviour serves to repel ectoparasites and tested the repellency of P. galapageium leaf extracts against parasites that negatively affect the fitness of Darwin’s finches, namely mosquitoes and the invasive hematophagous fly Philornis downsi. Mosquitoes transmit pathogens which have recently been introduced by humans and the larvae of the fly suck blood from nestlings and incubating females. Our experimental evidence demonstrates that P. galapageium leaf extracts repel both mosquitoes and adult P. downsi and also inhibit the growth of P. downsi larvae. It is therefore possible that finches use this plant to repel ectopoarasites.
In recent decades, arboreal Darwin's Finches have suffered from a dramatic population decline, which has been attributed to parasitism by the invasive botfly Philornis downsi. However, changes to their primary habitat caused by invasive plant species may have additionally contributed to the observed population decline. The humid cloud forest on Santa Cruz Island is a stronghold of arboreal Darwin's Finches but has been invaded by blackberry (Rubus niveus). In some areas, manual control and herbicide application are used to combat this invasion, both causing a temporary removal of the entire understory. We hypothesized that the removal of the understory reduces the availability of arthropods, which are a main food source during chick rearing. We compared the foraging behaviour of Warbler Finches (Certhidea olivacea) and Small Tree Finches (Camarhynchus parvulus) at three study sites that varied in the degree of R. niveus invasion and the length of time since the last herbicide application. We used prey attack rate and foraging success as an index for food availability and predicted a lower attack rate and foraging success in areas that had recently been sprayed with herbicides. We found that both the invasion and the management of R. niveus influenced microhabitat use, foraging substrate and prey choice in both species. Contrary to our hypothesis, we did not find a lower attack rate or foraging success in the area with recent herbicide application. This may be explained by the finding that both species mainly foraged in the canopy but also used dead plant structures of the understory of the recently controlled area that resulted from the invasive plant management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.