The L-selectin adhesion molecule is involved in guiding leukocytes to sites of inflammation. L-selectin is cleaved by an unusual proteolytic activity at a membrane-proximal site resulting in rapid shedding from the cell surface. Although it has been demonstrated that L-selectin mediates, in part, the early event of leukocyte rolling under hydrodynamic flow, the contribution of shedding to L-selectin function has remained unknown. Here we show that hydroxamic acid-based metalloprotease inhibitors block L-selectin downregulation from the cell surface of stimulated neutrophils, without affecting Mac-1 mobilization or general neutrophil activation, and inhibit cleavage of L-selectin in a cell-free system. Unexpectedly, the hydroxamic acid-based inhibitors reduced neutrophil rolling velocity under hydrodynamic flow, resulting in increased neutrophil accumulation. These results suggest that L-selectin is cleaved in seconds--much faster than previously suspected--during the process of rolling under hydrodynamic flow, and that shedding of L-selectin may contribute significantly to the velocity of leukocyte rolling. L-selectin shedding during rolling interactions may be physiologically important for limiting leukocyte aggregation and accumulation at sites of inflammation.
The interaction between nuclear receptors and coactivators provides an arena for testing whether protein-protein interactions may be inhibited by small molecule drug candidates. We provide evidence that a short cyclic peptide, containing a copy of the LXXLL nuclear receptor box pentapeptide, binds tightly and selectively to estrogen receptor ␣. Furthermore, as shown by x-ray analysis, the disulfide-bridged nonapeptide, nonhelical in aqueous solutions, is able to adopt a quasihelical conformer while binding to the groove created by ligand attachment to estrogen receptor ␣. An i, i؉3 linked analog, H-Lys-cyclo(D-Cys-Ile-Leu-Cys)-Arg-Leu-Leu-Gln-NH 2 (peptidomimetic estrogen receptor modulator 1), binds with a Ki of 25 nM, significantly better than an i, i؉4 bridged cyclic amide, as predicted by molecular modeling design criteria. The induction of helical character, effective binding, and receptor selectivity exhibited by this peptide analog provide strong support for this strategy. The stabilization of minimalist surface motifs may prove useful for the control of other macromolecular assemblies, especially when an amphiphilic helix is crucial for the strong binding interaction between two proteins. M embers of the nuclear receptor (NR) superfamily, which include the steroid receptors, are ligand-activated transcription factors that regulate a wide variety of physiological and developmental processes (1-3). Upon ligand binding, steroid receptors shed their accompanying heat shock proteins to form homodimers, and bind to their cognate DNA elements within the regulatory regions of steroid responsive genes. Steroid receptor agonists are typically hydrophobic molecules and have been demonstrated to bind to a buried hydrophobic pocket within the carboxyterminal ligand-binding domain (LBD) of the receptor. This results in a conformational shift causing repositioning of helix 12, which allows for recognition of coactivator proteins. Many coactivators contain a short pentapeptide motif, known as a NR box (4), that is responsible for recognition of a hydrophobic groove created on the surface of the LBD in response to repositioning of helix 12 upon agonist binding (5). Steroid receptor antagonists, like agonists, are also hydrophobic molecules and bind within the core of the LBD; however, these ligands do not position helix 12 in the correct conformation that would allow the coactivators to recognize the receptor. A large number of proteins characterized as NR coactivators have been identified, and many appear to contain one or, in some cases, multiple copies of the NR box with the consensus sequence LXXLL. McDonnell and coworkers (6, 7) have noted that peptide sequences that mimic this NR interaction motif could function as ER antagonists in cell based models when overexpressed as a component of a fusion protein. Detailed analysis of the interactions between the receptor and coactivators has revealed new possible points of intervention (8). Such targets have recently been proposed as attractive options for new anticancer dr...
Expression of the L-selectin adhesion molecule can be rapidly down-modulated by regulated proteolysis at a membrane-proximal site. The L-selectin secretase has remained undefined, and the secretase activity is resistant to a broad panel of common protease inhibitors. We have developed an L-selectin-alkaline phosphatase reporter, consisting of the ectodomain of human placental alkaline phosphatase fused to the membrane-proximal cleavage, transmembrane, and cytoplasmic domains of L-selectin, to aid in the screening for L-selectin secretase inhibitors. A hydroxamic acid-based metalloprotease inhibitor, KD-IX-73-4, inhibited release of the L-selectin-alkaline phosphatase reporter in a dose-dependent manner. The hydroxamic acid-based peptide was also found to inhibit wild type L-selectin down-regulation from the surfaces of phorbol myristate acetate-activated peripheral blood lymphocytes and phytohemagglutinin-stimulated lymphoblasts. Analysis of the proteolytic cleavage fragments of L-selectin confirmed that KD-IX-73-4 inhibited L-selectin proteolysis. Lymphocyte L-selectin was not down-regulated when co-cultured with formylmethionylleucylphenylalanine-stimulated neutrophils, suggesting that the putative secretase acts in cis with the membrane-bound L-selectin. These results suggest that the L-selectin secretase activity may involve a cell surface, zinc-dependent metalloprotease, although L-selectin shedding is not affected by EDTA and may be related to the recently described activity involved in processing of membrane-bound TNF-alpha.
A recently rediscovered reaction of base-assisted lanthionine formation has been applied to several systems of disulfide-bridged peptides. In addition to previously described nonapeptides consisting of i, i+3 cystine linkages, the reaction has now been extended to systems consisting of shorter (i, i+2) and longer (i, i+4) disulfide bridges. The desulfurization reaction is also compatible with disulfide bridges formed through homocysteines and penicillamines, yielding unusual amino acids such as cystathionine and beta,beta-dimethyl lanthionine (referred to as "penthionine") in a peptide chain, respectively. Systematic study of this transformation has provided several new insights into its mechanism. We have observed formation of dehydroalanine and dehydrovaline residues resulting from i, i+2-bridged cysteines and i, i+3-bridged cysteine/penicillamine peptides, respectively, thereby supporting a beta-elimination/Michael-addition mechanism for this transformation. Amino acid analysis and NMR data from total correlation spectroscopy (TOCSY) and (1)H-(13)C heteronuclear single quantum correlation (HSQC) experiments show three diastereomeric lanthionine-bridged peptides in the product mixture. But in the case of desulfurization of a cysteine/homocysteine containing disulfide-bridged peptide, Michael addition appears to be stereoselective, yielding a single stereoisomer of cystathionine within the peptide. According to molecular modeling and CD spectroscopy, constrained peptides such as those containing penicillamine are less likely to undergo facile desulfurization. Flexibility of the torsional angles (C(alpha)H-C(alpha)-C(beta)-S) corresponding to the cysteine residues and temperature appear to be contributing factors determining the extent of desulfurization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.