Eukaryotic cells contain several unconventional poly(A) polymerases in addition to the canonical enzymes responsible for the synthesis of poly(A) tails of nuclear messenger RNA precursors. The yeast protein Trf4p has been implicated in a quality control pathway that leads to the polyadenylation and subsequent exosome-mediated degradation of hypomethylated initiator tRNAMet (tRNAi Met). Here we show that Trf4p is the catalytic subunit of a new poly(A) polymerase complex that contains Air1p or Air2p as potential RNA-binding subunits, as well as the putative RNA helicase Mtr4p. Comparison of native tRNAi Met with its in vitro transcribed unmodified counterpart revealed that the unmodified RNA was preferentially polyadenylated by affinity-purified Trf4 complex from yeast, as well as by complexes reconstituted from recombinant components. These results and additional experiments with other tRNA substrates suggested that the Trf4 complex can discriminate between native tRNAs and molecules that are incorrectly folded. Moreover, the polyadenylation activity of the Trf4 complex stimulated the degradation of unmodified tRNAi Met by nuclear exosome fractions in vitro. Degradation was most efficient when coupled to the polyadenylation activity of the Trf4 complex, indicating that the poly(A) tails serve as signals for the recruitment of the exosome. This polyadenylation-mediated RNA surveillance resembles the role of polyadenylation in bacterial RNA turnover.
In mammals, polyadenylation of mRNA precursors (premRNAs) by poly(A) polymerase (PAP) depends on cleavage and polyadenylation specificity factor (CPSF). CPSF is a multisubunit complex that binds to the canonical AAUAAA hexamer and to U-rich upstream sequence elements on the pre-mRNA, thereby stimulating the otherwise weakly active and nonspecific polymerase to elongate efficiently RNAs containing a poly(A) signal. Based on sequence similarity to the Saccharomyces cerevisiae polyadenylation factor Fip1p, we have identified human Fip1 (hFip1) and found that the protein is an integral subunit of CPSF. hFip1 interacts with PAP and has an arginine-rich RNA-binding motif that preferentially binds to U-rich sequence elements on the pre-mRNA. Recombinant hFip1 is sufficient to stimulate the in vitro polyadenylation activity of PAP in a U-rich element-dependent manner. hFip1, CPSF160 and PAP form a ternary complex in vitro, suggesting that hFip1 and CPSF160 act together in poly(A) site recognition and in cooperative recruitment of PAP to the RNA. These results show that hFip1 significantly contributes to CPSF-mediated stimulation of PAP activity.
Interactions of pre-mRNA 3'end factors and the CTD of RNA polymerase II (RNAP II) are required for transcription termination and 3'end processing. Here, we demonstrate that Ssu72p is stably associated with yeast cleavage and polyadenylation factor CPF and provide evidence that it bridges the CPF subunits Pta1p and Ydh1p/Cft2p, the general transcription factor TFIIB, and RNAP II via Rpb2p. Analyses of ssu72-2 mutant cells in the absence and presence of the nuclear exosome component Rrp6p revealed defects in RNAP II transcription elongation and termination. 6-azauracil, that reduces transcription elongation rates, suppressed the ssu72-2 growth defect at 33 degrees C. The sum of our analyses suggests a negative influence of Ssu72p on RNAP II during transcription that affects the commitment to either elongation or termination.
Eukaryotic pre-mRNAs are capped at their 5' ends, polyadenylated at their 3' ends, and spliced before being exported from the nucleus to the cytoplasm. Although the three processing reactions can be studied separately in vitro, they are coupled in vivo. We identified subunits of the U2 snRNP in highly purified CPSF and showed that the two complexes physically interact. We therefore tested whether this interaction contributes to the coupling of 3' end processing and splicing. We found that CPSF is necessary for efficient splicing activity in coupled assays and that mutations in the pre-mRNA binding site of the U2 snRNP resulted in impaired splicing and in much reduced cleavage efficiency. Moreover, we showed that efficient cleavage required the presence of the U2 snRNA in coupled assays. We therefore propose that the interaction between CPSF and the U2 snRNP contributes to the coupling of splicing and 3' end formation.
2B4 is a cell surface glycoprotein of the immunoglobulin superfamily structurally related to CD2-like molecules. It was originally identified in the mouse as a receptor that mediates non-MHC-restricted cytotoxicity by NK cells and CD8 + T cells. Recently, 2B4 was shown to bind CD48 by molecular binding assays and surface plasmon resonance. Here, we have investigated the cell surface expression, biochemical characteristics and function of human 2B4. Our results show that 2B4 is expressed not only on NK cells and CD8 + T cells, but also on monocytes and basophils, indicating a broader role for 2B4 in leukocyte activation. In NK cells, engagement of 2B4 with a specific monoclonal antibody or with CD48 can trigger NK cell-mediated cytotoxicity. The contribution of 2B4-CD48 interaction to target cell lysis by different NK cell clones varies, probably dependent on the relative contribution of other receptor-ligand interactions. In T cells and monocytes, ligation of 2B4 does not lead to T cell or monocyte activation. Thus, it appears that the primary function of 2B4 is to modulate other receptor-ligand interactions to enhance leukocyte activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.