Neopterin, a compound derived from GTP, represents a precursor molecule of biopterin that is an essential cofactor in neurotransmitter synthesis. We have recently reported that in vivo as well as in vitro immune responses are accompanied by an increased release of neopterin and that this phenomenon can be used for the biochemical monitoring of diseases accompanied by hyperimmune stimulation. This article deals with the cellular origin and the control of this immune response-associated neopterin release in vitro. Using highly purified or monoclonal cellular reagents we demonstrate that macrophages (M phi) stimulated with supernatants from activated T cells release large amounts of neopterin into culture supernatants. Further experiments involving induction of neopterin release from M phi with various human recombinant interferons (IFNs) or neutralization of the effect of T cell supernatants with various monoclonal anti-IFN antibodies revealed immune IFN as the active principle. It thus appears that a metabolic pathway so far exclusively known in context with the generation of an essential cofactor of neurotransmitter-synthesis during immune responses is also activated in M phi under stringent control by immune IFN-like lymphokines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.