Phytoremediation is often discussed as a means of extracting trace metals in excess in the soil, but to increase its efficiency a better understanding of the factors controlling plant uptake is required. The main objective of this study was to examine the effect of origin (anthropogenic vs. geogenic) and mobility of thallium (Tl) in the rhizosphere on Tl uptake. Two Tl-hyperaccumulating Brassicaceae species, kale (Brassica oleracea acephala L. cv. Winterbor F1) and candytuft (Iberis intermedia Guers.), were grown in a rhizobox system to investigate the dynamics of Tl in the rhizosphere soil. Four different soils were used. Two soils contained high Tl amounts due to anthropogenic sources (emissions from a cement plant and mining activities). High Tl content in the two other soils was due to a high rock content (geogenic origin). On completion of growth in the rhizoboxes, the depletion of Tl in seven different chemical fractions, determined by sequential extraction, was compared to the plant uptake. Most of the Tl taken up was derived from the so-called "easily accessible" fractions in both soils with geogenic Tl as well as in the soils polluted by mining activities. Due to the small amounts of easily accessible Tl in the geogenic soils, Tl uptake by Brassicaceae was low. On the other hand, for the air emission-polluted soil, a high depletion of Tl from "less accessible" fractions was observed in addition to depletion of the easily accessible fractions. Hence, the latter soil demonstrated the highest potential for effective soil decontamination by phytoextraction within an appropriate time frame.
The concentration and isotopic composition of monochlorobenzene (MCB) was monitored in the plume of an anaerobic, contaminated aquifer in Bitterfeld, Germany. An enrichment in the carbon isotopic composition of more than 4 delta units was found at the fringes of the plume relative to the center (-26.5 %), suggesting the occurrence of in situ biodegradation of MCB. A similar enrichment was measured in a detailed cross-section of the plume and in depth-specific samples obtained in a multilevel sampling well. The latter samples gave a good correlation of MCB concentrations and respective isotopic composition according to the Rayleigh equation. On the other hand, batch experiments using the aerobic MCB-degrading strains Ralstonia sp. DSM 8910, Acidovorax facilis UFZ B517, Rhodococcus erythropolis UFZ B528, and Pseudomonas veronii UFZ B547 showed that the known aerobic pathway initiated by dioxygenases does not result in a significant isotopic fractionation. Thus, a novel anaerobic pathway resulting in an isotopic fractionation appears to be the predominant process of MCB degradation in this aquifer. The study also clearly demonstrates the usefulness of isotopic fractionation analysis to prove biodegradation directly in the field, even when microcosm studies are not available and a metabolic pathway has not yet been elucidated.
The agricultural practice of amending soils with composted municipal solid waste (MSW) adds significant amounts of organic matter and trace metals, including Cd. Under these conditions, soluble organic complexes of Cd formed in the compost may be more significant than previously thought, due to Cd bioavailability and mobility in the soil environment. To study the relative importance of different types of organic ligands in MSW compost for the binding of Cd, six fractions of the dissolved organic matter (DOM) in addition to humic acid (HA) and fulvic acid (FA) were extracted and their complexation of Cd quantified at pH 7 using an ion-selective electrode (ISE). The highest complexing capacities (CC) for Cd were found for the most humified ligands: HA (2386 micromol Cd g(-1) C of ligand), predialyzed FA (2468 micromol Cd g(-1) C), and HoA, a fulvic-type, easily soluble fraction (1042 micromol Cd g(-1) C). The differences in CC for Cd of the various organic ligands were not directly related to total acid-titratable or carboxylic groups, indicating the importance of sterical issues and other functional groups. The strength of association between Cd and the organic ligands was characterized by calculating stability constants for binding at the strongest sites (pK(int)) and modeling the distribution of binding site strengths. The pK(int) values of the DOM fractions ranged between 6.93 (HiN: polysaccharides) and 8.11 (HiB: proteins and aminosugars), compared with 10.05 for HA and 7.98 for FA. Hence, the highly complex and only partially soluble organic molecules from compost such as HA and FA demonstrated the highest capacity to sequester Cd. However, strong Cd binding of organic ligands containing N-functional groups (HiB) in addition to a high CC of soluble, humified ligands like HoA indicated the relevance of these fractions for the organic complexation of Cd in solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.