This paper introduces a new type of medium, called a video texture, which has qualities somewhere between those of a photograph and a video. A video texture provides a continuous infinitely varying stream of images. While the individual frames of a video texture may be repeated from time to time, the video sequence as a whole is never repeated exactly. Video textures can be used in place of digital photos to infuse a static image with dynamic qualities and explicit action. We present techniques for analyzing a video clip to extract its structure, and for synthesizing a new, similar looking video of arbitrary length. We combine video textures with view morphing techniques to obtain 3D video textures. We also introduce videobased animation, in which the synthesis of video textures can be guided by a user through high-level interactive controls. Applications of video textures and their extensions include the display of dynamic scenes on web pages, the creation of dynamic backdrops for special effects and games, and the interactive control of video-based animation.
In this paper we introduce a new algorithm for image and video texture synthesis. In our approach, patch regions from a sample image or video are transformed and copied to the output and then stitched together along optimal seams to generate a new (and typically larger) output. In contrast to other techniques, the size of the patch is not chosen a-priori , but instead a graph cut technique is used to determine the optimal patch region for any given offset between the input and output texture. Unlike dynamic programming, our graph cut technique for seam optimization is applicable in any dimension. We specifically explore it in 2D and 3D to perform video texture synthesis in addition to regular image synthesis. We present approximative offset search techniques that work well in conjunction with the presented patch size optimization. We show results for synthesizing regular, random, and natural images and videos. We also demonstrate how this method can be used to interactively merge different images to generate new scenes.
No abstract
We introduce a new optimization algorithm for video sprites to animate realistic-looking characters. Video sprites are animations created by rearranging recorded video frames of a moving object. Our new technique to find good frame arrangements is based on repeated partial replacements of the sequence. It allows the user to specify animations using a flexible cost function. We also show a fast technique to compute video sprite transitions and a simple algorithm to correct for perspective effects of the input footage. We use our techniques to create character animations of animals, which are difficult both to train in the real world and to animate as 3D models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.