Several new estimates for the [Formula: see text]-adic valuations of Stirling numbers of the second kind are proved. These estimates, together with criteria for when they are sharp, lead to improvements in several known theorems and their proofs, as well as to new theorems, including a long-standing open conjecture by Lengyel. The estimates and criteria all depend on our previous analysis of powers of [Formula: see text] in the denominators of coefficients of higher order Bernoulli polynomials. The corresponding estimates for Stirling numbers of the first kind are also proved. Some attention is given to asymptotic cases, which will be further explored in subsequent publications.
We have previously proved Kummer congruences mod primes p such that p − 1| /n for the universal divided Bernoulli numbersB n /n. In this paper we strengthen these congruences to hold mod powers of p.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.