Cation diffusion facilitator (CDF) proteins are ubiquitous divalent cation transporters that have been proved to be essential for metal homeostasis and tolerance in Archaebacteria, Bacteria, and Eukaryota. In plants, CDFs are designated as metal tolerance proteins (MTPs). Due to the lack of genomic resources, studies on MTPs in other plants, including cultivated crops, are lacking. Here, the identification and organization of genes encoding members of the MTP family in cucumber are described. The first functional characterization of a cucumber gene encoding a member of the Mn-CDF subgroup of CDF proteins, designated as CsMTP8 based on the highest homology to plant MTP8, is also presented. The expression of CsMTP8 in Saccharomyces cerevisiae led to increased Mn accumulation in yeast cells and fully restored the growth of mutants hypersensitive to Mn in Mn excess. Similarly, the overexpression of CsMTP8 in Arabidopsis thaliana enhanced plant tolerance to high Mn in nutrition media as well as the accumulation of Mn in plant tissues. When fused to green fluorescent protein (GFP), CsMTP8 localized to the vacuolar membranes in yeast cells and to Arabidopsis protoplasts. In cucumber, CsMTP8 was expressed almost exclusively in roots, and the level of gene transcript was markedly up-regulated or reduced under elevated Mn or Mn deficiency, respectively. Taken together, the results suggest that CsMTP8 is an Mn transporter localized in the vacuolar membrane, which participates in the maintenance of Mn homeostasis in cucumber root cells.
These authors contributed equally to this work.
SUMMARYMembers of the plant metal tolerance protein (MTP) family have been classified into three major groupsZn-CDF, Mn-CDF and Zn/Fe-CDF -however, the selectivity of most of the MTPs has not been confirmed yet. Cucumber gene CsMTP9 encoding a putative CDF transporter homologous to members of the Mn-CDF cluster is expressed exclusively in roots. The relative abundance of CsMTP9 transcript and protein in roots is significantly increased under Mn excess and Cd. Immunolocalization with specific antibodies revealed that CsMTP9 is a plasma membrane transporter that localizes to the inner PM domain of root endodermal cells. The plasma membrane localization of CsMTP9 was confirmed by the expression of the fusion proteins of GFP (green fluorescent protein) and CsMTP9 in yeast and protoplasts prepared from Arabidopsis cells. In yeast, CsMTP9 transports Mn 2+ and Cd 2+ via a proton-antiport mechanism with an apparent Km values of approximately 10 lM and 2.5 lM for Mn 2+ and Cd 2+ , respectively. In addition, CsMTP9 expression in yeast rescues the Mn-and Cd-hypersensitive phenotypes through the enhanced efflux of Mn 2+ and Cd 2+ from yeast cells. Similarly, the overexpression of CsMTP9 in A. thaliana confers increased resistance of plants to Mn excess and Cd but not to other heavy metals and leads to the enhanced translocation of manganese and cadmium from roots to shoots. These findings indicate that CsMTP9 is a plasma membrane H + -coupled Mn 2+ and Cd 2+ antiporter involved in the efflux of manganese and cadmium from cucumber root cells by the transport of both metals from endodermis into vascular cylinder.
Metal-tolerance proteins (MTPs) are divalent cation transporters that have been shown to be essential for metal homeostasis and tolerance in model plants and hyperaccumulators. Due to the lack of genomic resources, studies on MTPs in cultivated crops are lacking. Here, we present the first functional characterization of genes encoding cucumber proteins homologous to MTP1 and MTP4 transporters. CsMTP1 expression was ubiquitous in cucumber plants, whereas CsMTP4 mRNA was less abundant and was not detected in the generative parts of the flowers. When expressed in yeast, CsMTP1 and CsMTP4 were able to complement the hypersensitivity of mutant strains to Zn and Cd through the increased sequestration of metals within vacuoles using the transmembrane electrochemical gradient. Both proteins formed oligomers at the vacuolar membranes of yeast and cucumber cells and localized in Arabidopsis protoplasts, consistent with their function in vacuolar Zn and Cd sequestration. Changes in the abundance of CsMTP1 and CsMTP4 transcripts and proteins in response to elevated Zn and Cd, or to Zn deprivation, suggested metal-induced transcriptional, translational, and post-translational modifications of protein activities. The differences in the organ expression and affinity of both proteins to Zn and Cd suggested that CsMTP1 and CsMTP4 may not be functionally redundant in cucumber cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.