Here, amorphous silica nanoparticles (NPs), one of the most abundant nanomaterials, are used as an example to illustrate the utmost importance of surface coverage by functional groups which critically determines biocompatibility. Silica NPs are functionalized with increasing amounts of amino groups, and the number of surface exposed groups is quantified and characterized by detailed NMR and fluorescamine binding studies. Subsequent biocompatibility studies in the absence of serum demonstrate that, irrespective of surface modification, both plain and amine‐modified silica NPs trigger cell death in RAW 264.7 macrophages. The in vitro results can be confirmed in vivo and are predictive for the inflammatory potential in murine lungs. In the presence of serum proteins, on the other hand, a replacement of only 10% of surface‐active silanol groups by amines is sufficient to suppress cytotoxicity, emphasizing the relevance of exposure conditions. Mechanistic investigations identify a key role of lysosomal injury for cytotoxicity only in the presence, but not in the absence, of serum proteins. In conclusion, this work shows the critical need to rigorously characterize the surface coverage of NPs by their constituent functional groups, as well as the impact of serum, to reliably establish quantitative nanostructure activity relationships and develop safe nanomaterials.
The development of a versatile class of silica nanoparticles for cell studies is reported. The particles contain a fluorescent dye-encoded core and a single-stranded DNA oligonucleotide-displaying shell. They are accessible in arbitrary size and color through robust protocols for Stöber-based colloidal synthesis and sturdy chemical surface functionalization. Silica particles in the size range of 100 nm to 1.5 µm diameter containing fluorescein, Cy3 oder Cy5 dye-encoded cores are synthesized and functionalized with DNA oligonucleotides. These silica biopebbles are conveniently traceable by microscopy and have a high affinity to live cells, which makes them ideal for cell uptake studies, as demonstrated for MCF7 and A431 cancer cells. The biopebbles can be utilized as building blocks for the self-assembled formation of arbitrary surface patterns on glass substrates. With these architectures, the privileged internalization of the biopebbles can be exploited for improved adhesion and guidance of cells because the particles are no longer ingested by adhered cells due to their physical connection with the solid support. It is believed that the biopebble approach will be useful for a variety of applications, fundamental studies in cell biology and tissue engineering.
The development of methods for colloidal self‐assembly on solid surfaces is important for many applications in biomedical sciences. Toward this goal, described is a versatile class of mesoporous silica nanoparticles (MSN) that contain on their surface various types of DNA molecules to enable their self‐assembly into micropatterned surface architectures useful for cell studies. Monodisperse dye‐doped MSN are synthesized by biphase stratification and functionalized with an aptamer oligonucleotide that serves as gatekeeper for the triggered release of encapsulated molecular cargo, such as fluorescent dye rhodamine B or the anticancer drug doxorubicin. One or two additional types of oligonucleotides are installed on the MSN surface to enable DNA‐directed immobilization on solid substrates bearing patterns of complementary capture oligonucleotides. It is demonstrated that this strategy can be used for efficient self‐assembly of microstructured surface architectures, which not only promote the adhesion and guidance of cells but also are capable of affecting the fate of adhered cells through triggered release of their cargo. It is believed that this approach is useful for diverse applications in tissue engineering and nanobio sciences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.