In deep‐water animals, the visual sensory system is often challenged by the dim‐light environment. Here, we focus on the molecular mechanisms involved in rapid deep‐water adaptations. We examined visual system evolution in a small‐scale yet phenotypically and ecologically diverse adaptive radiation, the species flock of cichlid fishes in deep crater lake Barombi Mbo in Cameroon, West Africa. We show that rapid adaptations of the visual system to the novel deep‐water habitat primarily occurred at the level of gene expression changes rather than through nucleotide mutations, which is compatible with the young age of the radiation. Based on retinal bulk RNA sequencing of all eleven species, we found that the opsin gene expression pattern was substantially different for the deep‐water species. The nine shallow‐water species feature an opsin palette dominated by the red‐sensitive (LWS) opsin, whereas the two unrelated deep‐water species lack expression of LWS and the violet‐sensitive (SWS2B) opsin, thereby shifting the cone sensitivity to the centre of the light spectrum. Deep‐water species further predominantly express the green‐sensitive RH2Aα over RH2Aβ. We identified one amino acid substitution in the RH2Aα opsin specific to the deep‐water species. We finally performed a comparative gene expression analysis in retinal tissue of deep‐ vs. shallow‐water species. We thus identified 46 differentially expressed genes, many of which are associated with functions in vision, hypoxia management or circadian clock regulation, with some of them being associated with human eye diseases.
The small cyprinid genus Prolabeops Schultz, 1941 is restricted to the Nyong and Sanaga River systems in Cameroon. In the past, the genus had been suggested to be either a member of the Labeoninae, Torinae or the Smiliogastrinae mainly on the basis of morphological similarities, and it is nowadays considered as incertae sedis within the Cypriniformes. This study provides the first attempt to reveal the phylogenetic position of Prolabeops using molecular data. For this purpose, the authors sequenced a large fraction of the mitochondrial genome (c. 13,600 bp), including all mitochondrial protein coding genes, of two Prolabeops melanhypopterus specimens and an additional four Enteromius specimens. The large-scale phylogenetic analysis was based on an alignment including all mitochondrial protein coding genes of 902 specimens representing c. 899 cypriniform species. Prolabeops was clearly recovered within the African Smiliogastrinae, forming a weakly supported clade together with Enteromius jae, Enteromius hulstaerti and Barboides gracilis. The study data underline the urgent need of a thorough taxonomic revision of the small African barbs collectively placed in the genus Enteromius.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.